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Abstract 

Background:  Long noncoding RNAs (lncRNAs) play a critical role in innate and adaptive immune responses. Thus, 
we aimed to identify ideal subtypes for head and neck squamous cell carcinoma (HNSCC) based on immune-related 
lncRNAs.

Methods:  TCGA HNSCC cohort was divided into two datasets (training and validation dataset), and 960 previously 
characterized immune-related lncRNAs were extracted for non-negative matrix factorization analysis. We character-
ized our HNSCC subtypes based on biological behaviors, immune landscape and response to immunotherapy in 
both training and validation cohort. A lncRNA-signature was generated to predict our HNSCC subtypes, and essential 
lncRNAs involved in tumor microenvironment (TME) were identified.

Results:  We developed and validated two HNSCC subtypes (C1 and C2) based on the 70 lncRNAs in the training 
and validation cohort. C2 subtype displayed good prognosis, high immune cell infiltration, immune-related genes 
expression and sensitivity to PD-1 blockade. C1 subtype was associated with high activity of mTORC1 signaling and 
glycolysis as well as high fraction of inactive immune cells. Finally, we generated a 31-lncRNA signature that could 
predict our above subtypes with high accurate. Additionally, TRG-AS1 was identified as the essential lncRNA involving 
TME formation. Knockdown of TRG-AS1 inhibited the expression of HLA-A, HLA-B, HLA-C, CXCL9, CXCL10 and CXCL11. 
High expression of TRG-AS1 indicated a favorable prognosis in HNSCC and anti-PD-L1 cohort (IMvigor210).

Conclusions:  Our study establishes a novel HNSCC classification on the basis of 31-lncRNA, helping to identify 
beneficiaries for anti-PD-1 treatment. In addition, a critical lncRNA TRG-AS1 is identified as a new potential prognosis 
biomarker as well as therapeutic target.
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Background
Head and neck squamous cell carcinoma (HNSCC) is 
the sixth most common malignant tumor, with approxi-
mately 640,000 new cases worldwide each year [1]. 
Despite significant advancements in treatment, mortal-
ity rates for HNSCC remain at around 50%. Thus, it is 

essential to explore novel and effective therapeutic strate-
gies to improve the clinical outcomes of HNSCC.

Recently, immunotherapy has received more and 
more attention in the area of cancer treatment owing 
to its remarkable and stable overall survival advantages. 
HNSCC might also be effective to immunotherapies 
since its frequent mutations and resulted neoantigens [2]. 
Indeed, platinum-pretreated metastatic and recurrent 
HNSCC receiving anti-programmed cell death (PD)-1 
therapy showed durable clinical and survival benefit [3, 
4]. However, the overall response rates of immunother-
apy are less than 20% in unselect HNSCC patients [3, 5]. 
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A better understanding of the tumor microenvironment 
(TME) formation and selection of potential beneficiaries 
may help increase survival benefit of immunotherapy.

Increasing evidence have proved that long noncod-
ing RNAs (lncRNAs) played a critical role in innate and 
adaptive immune responses via regulating the differentia-
tion and function of immune cells. For example, knock-
down of lncRNA Pvt1 could significantly suppress the 
immunosuppressive function of granulocytic myeloid-
derived suppressor cells [6]. In terms of adaptive immune 
responses, lncRNA NKILA and EGFR could reduce 
cytotoxic T lymphocytes (CTLs) infiltration and CTLs 
activity [7, 8]. The function of few lncRNAs in HNSCC 
immunology has been demonstrated [9, 10], however, a 
large number of immune-related lncRNAs have not been 
investigated thoroughly.

In this study, we systematically analyzed the immune-
related lncRNAs in HNSCC. Two HNSCC subtypes 
(C1 and C2) based on the prognostic value of immune-
related lncRNAs were identified in both training and vali-
dation cohort. C2 subtype exhibited higher immune cell 
infiltration, fractions of active immune cells, expression 
of immune-associated molecular and the response rate 
of anti-PD-1 treatment than C1 subtype in both training 
and validation cohort. In addition, TRG-AS1 acted an 
important role in regulating TME of HNSCC and might 
be a potential therapeutic target.

Methods
Data source
Level 3 RNA-Seq data consisting of 502 HNSC tissues 
and 44 normal controls were downloaded using TCGA-
biolinks R package [11] (up to April 21, 2020). We also 
obtained corresponding clinical information, including 
age, gender, tumor grade, TNM stage, survival time, and 
survival status. After filtering out non-primary tumors 
and following up for less than 30 days, 490 HNSC sam-
ples were finally included and randomly split into two 
cohorts: training cohort (n = 343) and validation cohort 
(n = 147). The baseline information was presented in 
Table 1.

Identification of HNSCC subtypes
A total of 960 immune-related lncRNAs were achieved 
from a previous study [12]. First, univariate Cox analy-
sis was utilized to filter out lncRNAs without prognosis 
value (P < 0.05). Subsequently, non-negative matrix fac-
torization (NMF) clustering method was employed in the 
training dataset using CancerSutypes R package [13]. At 
last, the same candidate lncRNAs were also utilized in 
the process of NMF clustering in the validation dataset to 
further verify the robustness of the above classifier.

Function enrichment and gene set variation analysis
We applied limma R package [14] to identify differentially 
expressed mRNAs (DEmRNAs) based on the cut-off cri-
teria: absolute log2fold change (FC) ≥ 1 and adjusted P 
value < 0.05. Subsequently, gene ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were performed using clusterProfiler R package 
[15]. Adjusted P < 0.05 was considered statistically signif-
icant. In addition, ‘Hallmark’ gene sets were downloaded 
using msigdbr R package for running gene set variation 
analysis (GSVA) [16], which is a commonly performed 
method for assessing the variation in biological process 
activity and pathway in the expression datasets samples. 
Statistically significance was defined as |log2FC| > 0.1 and 
adjusted P < 0.05.

Estimation of immune infiltration
A total of 23 types of immune cells signatures were 
extracted from a published study [17] and the immune 
cell infiltration was quantified by single-sample gene 
set enrichment analysis (ssGSEA) based on GSVA R 

Table 1  Clinicopathological characteristics of training and 
validation cohort

Variable Training cohort Validation cohort

Age

 < 60 153 (44.61%) 65 (44.22%)

 >=60 190 (55.39%) 82 (55.78%)

Gender

 Female 94 (27.41%) 35 (23.81%)

 Male 249 (72.59%) 112 (76.19%)

Race

 White 291 (84.84%) 129 (87.76%)

 Others 42 (12.24%) 14 (9.52%)

 Unknown 10 (2.92%) 4 (2.72%)

Alcohol consumption

 No 103 (30.03%) 48 (32.65%)

 Yes 235 (68.51%) 93 (63.27%)

 Unknown 5 (1.46%) 6 (4.08%)

Histologic grade

 G1+G2 255 (74.34%) 97 (65.99%)

 G3+G4 79 (23.03%) 40 (27.21%)

 Unknown 9 (2.62%) 10 (6.80%)

Stage

 Stage I+II 61 (17.78%) 33 (22.45%)

 Stage III +IV 233 (67.93%) 96 (65.31%)

 Unknown 49 (14.29%) 18 (12.24%)

Vital status

 Alive 207 (60.35%) 94 (63.95%)

 Dead 136 (39.65%) 53 (36.05%)
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package. The abundance of immune cell was verified by 
the MCP counter and CIBERSORT, which were obtained 
from TIMER website (http://​timer.​cistr​ome.​org/) [18]. In 
addition, the stromal scores and immune scores was also 
calculated by ESTIMATE algorithm [19].

Immunotherapy response and subtype prediction
To indirectly predict the immunotherapy response of our 
subtypes, we measured the similarity of gene expression 
profiles between our subclasses and immunotherapy-
treated melanoma patients based on subclass mapping 
[20, 21]. In addition, in order to facilitate clinical applica-
tion, logistic least absolute shrinkage and selector opera-
tion (LASSO) algorithm [22] was employed to predict 
our subtypes classification.

Identification of critical lncRNAs involved in TME formation
Random forest R package [23] was utilized to rank the 
importance of lncRNAs filtered in LASSO. The correla-
tion between the important lncRNAs and immune infil-
tration was evaluated.

Cell culture
The human HNSCC cell line CAL27 was obtained from 
ATCC (Manassas, VA, USA). Cells were cultured in 
Dulbecco’s Modified Eagle’s Medium (Gibco, USA) sup-
plemented with 10% fetal bovine serum (Gibco, USA) at 
37 °C in a humidified 5% CO2 incubator.

Cell transfection
A small interfering RNA (siRNA) targeting TRG-AS1 (si-
TRG-AS1) and a negative control siRNA (si-NC) were 
designed and purchased from GenePharma (Suzhou, 
China). The sequence of si-TRG-AS1#1 was 5′- GGA​
GCU​GGA​CUA​CAG​UGA​UdTdT-3′, and the sequence 
of si-TRG-AS1#2 was 5′-GCA​ACU​ACC​UCA​UAG​AUU​
UdTdT-3′. Lipofectamine 3000 (Invitrogen, Carlsbad, 
CA, United States) was used to transfect si- TRG-AS1 
and si-NC into HNSCC cells following the instructions of 
the manufacturer.

Quantitative real‑time PCR
Total RNA was isolated from CAL27 cells by the RNA-
quick purification kit (ESscience Biotech, China) fol-
lowing the manufacturer’s instructions. A total of 2  µg 
RNA was synthesized from cDNA using HiScript III-RT 
SuperMix (Vazyme, China). The obtained cDNA product 
was used for real-time quantification PCR (RT-qPCR). 
The following primers were used: TRG-AS1, forward 
5′-CTC​CTG​GCT​GAT​CCC​ACT​-3′, and reverse 5′-CAC​
TAT​GCC​ATC​CTG​TAC​CAC-3′; HLA-A, forward 
5′-AGA​TAC​ACC​TGC​CAT​GTG​CAGC-3′, and reverse 
5′- GAT​CAC​AGC​TCC​AAG​GAG​AACC-3′; HLA-B, 

forward 5′-CTG​CTG​TGA​TGT​GTA​GGA​GGAAG-3′, 
and reverse 5′ -GCT​GTG​AGA​GAC​ACA​TCA​GAGC-
3′; HLA-C, forward 5′-GGA​GAC​ACA​GAA​GTA​CAA​
GCGC-3′, and reverse 5′- ACA​TCC​TCT​GGA​GGG​TGT​
GAGA-3′; CXCL9, forward 5′-CAA​TTT​GCC​CCA​AGC​
CCT​TC-3′, and reverse 5′-TTT​TCT​TTT​GGC​TGA​CCT​
GT-3′; CXCL10, forward 5′-GGA​TGG​CTG​TCC​TAG​
CTC​TG-3′, and reverse 5′- TGA​GCT​AGG​GAG​GAC​
AAG​GA-3′; CXCL11, forward 5′- AGC​CTT​GGC​TGT​
GAT​ATT​GT-3′, and reverse 5′- GGG​TAC​ATT​ATG​GAG​
GCT​TTCT-3′; GAPDH, forward 5′-CTC​CTC​CTG​TTC​
GAC​AGT​CAGC-3′, and reverse 5′-CCC​AAT​ACG​ACC​
AAA​TCC​GTT-3′.

Statistical analysis
Log-rank test was used to compare the overall survival 
under different conditions assessed by Kaplan Meier 
survival curve. The cut-off of expression was identified 
by survminer package. The hazard ratios (HRs) and 95% 
confidence intervals (CIs) of OSCC mortality risk was 
estimated by univariate and multivariate Cox propor-
tional hazards models. R was used to perform all statisti-
cal analyses.

Results
NMF identifies two subclasses in HNSCC
A flowchart was developed to summarize our study 
(Fig.  1a). We obtained 70 prognosis-related candidate 
lncRNAs in training cohort by univariate Cox analysis, 
and according to their expression profile, we clustered 
the 343 HNSCC samples in the training cohort using 
NMF clustering. The results indicated that, when sub-
types = 2, the maximum value of the average silhouette 
width (ASW) could be reached and the heatmap also 
maintained a highest level of similarity within a cluster, 
consequently, the training set should be divided into 2 
subtypes (Fig.  1b). Subsequently, we applied NMF to 
validation cohort with 147 samples and the results also 
indicated that there were two distinct molecular subtypes 
of HNSCC (Additional file  1: Fig. S1). Based on above 
classification, C2 had better prognosis than C1 in train-
ing and validation cohort (Fig. 1c, d). After adjust poten-
tial confounds, C2 subtype still showed lower mortality 
risk compared with C1 subtype (0.52 [0.33, 0.80] in the 
training cohort; 0,49 [0.25, 0.94] in the validation cohort) 
(Table 2).

The biological behaviors in distinct lncRNA‑related 
patterns
To better understand the biological behaviors between 
two subtypes of HNSCC, we first performed differen-
tial analyses. A total of 309 DEmRNAs were obtained 
between C1 and C2 group and these genes were mainly 

http://timer.cistrome.org/
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Fig. 1   Identification of HNSCC subtype based on NMF analysis in the training cohort. a Flow diagram of the study. b NMF analysis based on 70 
immune-related lncRNAs. c, d Survival analysis of the two HNSCC subtypes in training and validation cohort
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enriched in immune related biological processes, such as 
T cell activation, regulation of lymphocyte/T cell activa-
tion and cell-cell adhesion (Fig. 2a). Besides, GSVA was 

applied to identify different pathways between C1 and 
C2 group. The results showed that immune related path-
ways (Interferon alpha/gamma response, IL6 JAK STAT3 

Table 2  Relationship between HNSCC subtypes and overall survival in different models

Model I adjusted for age, gender, race and alcohol consumption;

Model II adjusted for age, gender, race, alcohol consumption, histologic grade and stage

Training cohort Validation cohort

HR 95% CI P value HR 95% CI P value

Crude 0.57 (0.39, 0.84) 0.0048 0.51 (0.27, 0.96) 0.0363

Model I 0.55 (0.37, 0.81) 0.0028 0.48 (0.25, 0.91) 0.0241

Module II 0.52 (0.33, 0.80) 0.0032 0.49 (0.25, 0.94) 0.033

Fig. 2   Biological characteristics of HNSCC subtypes. a, c GO analysis in training and validation cohort. b, d GSVA analysis in training and validation 
cohort
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signaling, Complement, inflammatory response and IL2 
STAT5 signaling) were activate in C2 subtype, while 
MYC targets, mTORC1 signaling, glycolysis and choles-
terol homeostasis etc. were higher in C1 group (Fig. 2b). 
Validation cohort also found similar results, and thus 
further verified the robustness of HNSCC classification 
(Fig. 2c, d).

TME cell infiltration characteristics in distinct 
lncRNA‑related patterns
Since C2 subtype activated multiple immune-related 
pathways, we further explored the difference in TME 
between C1 and C2 subtype. C2 group gained more 
immune score and stromal score than C1 subtype in 
the training cohort, while a higher stromal score was 
not observed in the validation cohort (Fig.  3a, b). Next, 
immunologic landscape was characterized based on 
immune cell infiltration. Corresponding to the immune 
score, most of immune cells infiltration was higher in 
C2 subtype, including innate and adaptive immunity 
cells (Fig.  3c, d). Furthermore, MCP analysis was also 
performed to validate the above results. Fortunately, we 
obtained similar results, that is, the infiltration of B cell, 
T cell, CD8+ T cell, monocyte, macrophage/monocyte 
and myeloid dendritic cell was higher in C2 group. In 
addition, cytotoxicity score was also elevated in C2 group 
(Additional file  2: Fig. S2). Relative proportions of 22 
immune cells subsets were estimated based on CIBER-
SORT method. In both cohorts, the infiltration fractions 
of native B cell, macrophage M1, activated mast cell, acti-
vated NK cell, activated memory CD4+ T cell, CD8+ 
T cell, T follicular helper (TFH) and regulatory T cells 
(Tregs) were significantly upregulated, while eosinophil, 
macrophage M0, resting master cells and resting NK cells 
were obviously downregulated in C2 subtype than C1 
subtype (Fig. 3e, f ). These results indicated that C2 group 
might be ‘hot tumor’.

In addition to immune infiltration, we also assessed 
the expression of immune-related genes between the 
two groups, and the results were largely consistent 
with immune infiltration (Fig.  4). Most HLA molecules 
were generally upregulated in the C2 group. Immune 
checkpoints, such as LAG3, PDCD1, CD274, CTLA4, 
and TIGIT, were observed increased in the C2 group. 
Moreover, we also found the expression of most immu-
nomodulators were higher in C2 group than C1 group, 
including chemokines and cytolytic activity related 
genes, such as CXCL9, CXCL10, IL2, GZMA and RPF1. 
Five of the above dysregulated immune-associated genes 
are the member of “IFNg signature” (IDO1, CXCL10, 
CXCL9, HLA-DRA, STAT1 and IFNG), suggesting their 
positive clinical response to anti-PD-1 treatment. In 

summary, patients in C2 group might be more sensitive 
to immunotherapy.

Distinct response to immunotherapy for lncRNA‑related 
patterns
To assess the response to immunotherapy for the two 
subtypes, we compared their gene expression profile with 
a published dataset which included 47 melanoma patients 
who received immunotherapies. As expected, significant 
association was observed between the expression pro-
file of C2 group and PD-1-response group, indicating 
that C2 group was more promising to respond to anti-
PD-1 (Fig.  5a). Therefore, our classification of HNSCC 
was robustness and had potential ability to seek general 
susceptibilities to anti-PD-1 therapy. To better advance 
their clinical application, we applied LASSO to construct 
a prediction model in the training cohort and obtained 
a 31-lncRNA signature. The formula of the lncRNA-sig-
nature was shown in (Additional file 3: Table S1). Based 
on the cut-off value (C1: < 3.68, C2: > 3.68) of training 
cohort, we further explored the subtypes of validation 
cohort. Fortunately, we observed a high concordance 
(92.4% in subtype C1, 98.2% in subtype C2) in the valida-
tion cohort (Fig. 5b).

TRG‑AS1 as essential lncRNA in regulating TME
To further explore the essential lncRNAs that regulated 
TME, the 31 lncRNAs from the above obtained lncRNA-
signature were subjected to random forest analysis. The 
results indicated that TRG-AS1 was the most important 
lncRNA in our clustering (Fig. 6a). TRG-AS1 was highly 
expression in C2 group and it was significantly positively 
correlated with most types of immune cell infiltration 
(Fig. 6b, c). The MHC-I molecules and chemokines (e.g. 
CXCL9/10/11) paly an important role in immune cell 
infiltration, and thus we further assessed the relation-
ship between TRG-AS1 and above genes. The results 
indicated that knockdown of TRG-AS1 inhibited the 
expression of HLA-A, HLA-B, HLA-C, CXCL9, CXCL10 
and CXCL11 (Fig. 6d). As expected, the high expression 
of TRG-AS1 indicated a favor prognosis (Fig. 6e). Thus, 
TRG-AS1 might play an essential role in the TME forma-
tion of HNSCC. In addition, we also found a strong posi-
tively relationship between TRG-AS1 and immune cells 
in other types of tumors, especially BRCA and CHOL 
(Additional file 4: Table S2), which was obtained from a 
previous study. Moreover, OS benefit was also observed 
in the high TRG-AS1 expression group in the anti PD-L1 
treatment cohort (IMvigor210) (Additional file 5: Fig. S3). 
Collectively, TRG-AS1 might be of great importance in 
the formation of TME and tumor development.
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Fig. 3   Immune characteristics of HNSCC subtypes. a, b Boxplot of immune score in training cohort and validation cohort. c, d Boxplot of immune 
cell infiltration in training cohort and validation cohort. e, f Boxplot of immune cell fraction in training cohort and validation cohort. (*P < 0.05, **P < 
0.01, ****P < 0.0001, ns represents no significance)
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Discussion
Immunotherapy is a promising treatment because 
it shows significant and durable clinical benefits in 
advanced HNSCC patients, however, less than 20% 
HNSCC could benefit from it, which highlights the 
demand to identify ideal subtypes for immunotherapy 
in HNSC. With the deepening in the molecular mecha-
nisms of tumor immunity, lncRNAs attracted more and 
more attention due to their functions of regulating innate 
and adaptive immune cells response. Therefore, immune-
related lncRNAs may help to explore the subtype which 
is more sensitive to immunotherapy.

In this study, we identified two robust subtypes (C1 
and C2 subtype) based on the 70 immune-related lncR-
NAs with distinct TME characteristics. Compared with 
C1 subtype, C2 subtype presented increased immune cell 
infiltration and HLA molecules, suggesting initial recog-
nition by host immune system and high level of cancer 
antigen presentation [24]. Higher fractions of activated 
immune cells (e.g. macrophage M1, activated mast/NK/
memory CD4+ T cell, CD8+ T cell, TFH cell), upregu-
lated expression of chemokines and cytolytic activity 

related genes as well as cytotoxicity score in C2 subtype 
indicated an active antitumor immune response [25–27]. 
Therefore, C2 subtype could be characterized by immu-
noinflammatory phenotype (also known as ‘hot tumor’), 
which maybe a possible explanation for the longer sur-
vival time of C2 subtype, and was consistent with previ-
ous studies [17, 25, 28]. Accordingly, it is reasonable to 
find that C2 subtype might more likely to benefit from 
immunotherapy owing to its TME characteristics.

C1 subtype characterized by low immune cell infiltra-
tion, decreased immune-related genes and high fraction 
of inactive immune cells, corresponding to immune-
desert phenotype. GSVA analysis found that C1 subtype 
had increased activity of mTORC1 signaling, which is a 
metabolic master regulator. Active mTORC1 leads to 
the elevated glycolysis [29, 30], which is in line with our 
results, that is C1 subtype had higher activity of both 
mTORC1 signaling and glycolysis. Increased glycolysis 
in tumor cells are associated with immunosuppressive 
TME. On the one hand, as a result of glucose deprivation, 
tumor-infiltrating lymphocytes have decreases in antitu-
mor effector molecules production and myeloid-derived 

Fig. 4  Heatmap of immune-related genes in training and validation cohort



Page 9 of 12Cao et al. Cancer Cell International           (2022) 22:25 	

suppressor cells were recruited to the TME [31–33]. On 
the other hand, an acidic TME formation hampers the 
expression of IFNγ in cytotoxic cells (T cells and NK 
cells) and promotes IL-17-mediated and IL-23-mediated 
inflammation [34, 35]. These might partly explain the 
TME characteristics as well as the poor prognosis of C1 
subtype. Accordingly, it is reasonable to speculate the 
combination of glycolysis inhibitor and immune-check-
point inhibitor might improve clinical outcome of C1 
subtype.

In addition to identify and validate robust subtypes 
with distinct TME characteristics in HNSCC, we still 
found that lncRNA TRG-AS1, T cell receptor gamma 
locus antisense RNA 1, might play a critical role in reg-
ulating TME and might serve as potential prognosis 
biomarker as well as therapeutic target. Knockdown of 
TRG-AS1 suppressed the expression of HLA-A, HLA-
B, HLA-C, CXCL9, CXCL10 and CXCL11. HLA-A, 
HLA-B and HLA-C play an important role in antigen 
presentation, thereby initiating an immune response. The 

Fig. 5   Immunotherapeutic response and identification of predictive classifier. a C2 may be more response to the PD-1 inhibitor (nominal and 
Bonferroni corrected P < 0.05) by SubMap analysis in training and validation cohort. b Concordance of HNSCC subtypes prediction between 
original classification based on NMF and the 31-lncRNA classifier

Fig. 6   Identification of TRG-AS1 as an essential lncRNA. a 31-lncRNA contribution to HNSCC subtype. b Boxplot of TRG-AS1 expression in training 
cohort and validation cohort. c The correlation between TRG-AS1 and immune cell infiltration in training cohort and validation cohort. d Expression 
levels of TRG-AS1, HLA-A and HLA-B, HLA-C, CXCL9, CXCL10 and CXCL11 in CAL27 cells after transfection with control siRNA or TRG-AS1 siRNA. 
e Survival analysis of TRG-AS1 in training and validation cohort

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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expression of CXCL9, CXCL10 and CXCL11 is positively 
correlated with the density of tumor infiltrating NK and 
T cells [36]. Thus, it was not surprising to find that TRG-
AS1 was significant positively correlated with multiple 
immune cell infiltration and long survival time. In addi-
tion, high expression of TRG-AS1 was also correlated 
with more immune cell infiltration in multiple tumors 
as well as OS benefit in the anti PD-L1 treatment cohort, 
mainly including bladder and kidney cancer. Thus, the 
above results highlighted the necessary to explore the 
function of TRG-AS1 in pan-cancer.

Conclusions
In summary, we generate a novel HNSCC classifier based 
on 31-lncRNA, which helps to identify ideal candidates 
for anti-PD-1 treatment. In addition, an important 
lncRNA TRG-AS1 is identified to a novel potential prog-
nosis biomarker as well as therapeutic target.
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