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Abstract 

Background:  The tumour heterogeneous make-up of immune cell infiltrates is a key factor for the therapy response 
and prognosis of hepatocellular carcinoma (HCC). However, it is still a major challenge to comprehensively under-
stand the tumour immune microenvironment (TIME) at the genetic and cellular levels.

Methods:  HCC single-cell RNA sequencing (scRNA-seq) data were downloaded from the Gene Expression Omni-
bus (GEO) database, and gene expression data were retrieved from The Cancer Genome Atlas (TCGA) database and 
International Cancer Genome Consortium (ICGC) database. Cell-type identification by estimating relative subsets of 
RNA transcripts (CIBERSORT) was performed to evaluate the abundance of immune infiltrating cells. We employed 
weighted gene coexpression network analysis (WGCNA) to construct a gene coexpression network. Univariate Cox 
and least absolute shrinkage and selection operator (LASSO) analyses were further used to construct a risk model. 
Moreover, the expression levels of model genes were assessed by qPCR.

Results:  We defined 25 cell clusters based on the scRNA-seq dataset (GSE149614), and the clusters were labelled as 
various cell types by marker genes. Then, we constructed a weighted coexpression network and identified a total of 
6 modules, among which the brown module was most highly correlated with tumours. Moreover, we found that the 
brown module was most closely related to monocytes (cluster 21). Through univariate Cox and LASSO analyses, we 
constructed a 3-gene risk model (RiskScore = 0.257*Expression CSTB + 0.263* Expression TALDO1 + 0.313* Expression 

CLTA). This risk model showed excellent predictive efficacy for prognosis in the TCGA-LIHC and ICGC cohorts. Addition-
ally, patients with high risk scores were found to be less likely to benefit from immunotherapy.

Conclusions:  We developed a 3-gene signature (including CLTA, TALDO1 and CSTB) based on the heterogeneity of 
the TIME to predict the survival outcome and immunotherapy response.
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Background
Hepatocellular carcinoma (HCC) is the most common 
primary liver cancer and accounts for 75–85% of cases. 
HCC was also the sixth most commonly diagnosed 
cancer and the fourth leading cause of cancer-related 
deaths globally [1] in 2018. Only hepatic resection and 
liver transplantation are considered potentially curative 
approaches for treating HCC. However, most patients are 
diagnosed at a late stage, and the treatment rate for early-
stage patients is disappointingly low [2]. It is well known 

Open Access

Cancer Cell International

*Correspondence:  zdyxyxkj@zju.edu.cn; ljli@zju.edu.cn
†Juan Lu and Yanfei Chen contributed equally to this work
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 
National Clinical Research Center for Infectious Diseases, Collaborative 
Innovation Center for Diagnosis and Treatment of Infectious Diseases, 
The First Affiliated Hospital, College of Medicine, Zhejiang University, 
Shangcheng District, No. 79 Qingchun Road, Hangzhou 310003, Zhejiang, 
China

http://orcid.org/0000-0003-0078-8769
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-022-02469-2&domain=pdf


Page 2 of 12Lu et al. Cancer Cell International           (2022) 22:38 

that the tumour immune microenvironment (TIME) 
plays an essential role in tumorigenesis, tumour devel-
opment, and treatment outcome [3–5]. In recent years, 
immunotherapy has emerged as a promising strategy for 
cancer treatment, while only a few HCC patients showed 
response to immune treatment. Therefore, systematic 
analysis of the function of various types of intratumour 
immune cells might contribute to the development of 
novel biomarkers for prognosis and therapeutic effective-
ness for patients with HCC.

With the rapid development of next-generation 
sequencing technologies, an increasing number of stud-
ies have examined gene expression in HCC based on 
RNA sequencing (RNA-seq). However, RNA-seq is typi-
cally performed in “bulk”, with data representing the 
average gene expression patterns of a large number of 
cells [6]. Notably, single-cell RNA sequencing (scRNA-
seq) is a novel sequencing technology that provides 
relevant information for the characterization of single 
immune cells or tumour cells [7]. scRNA-seq highlights 
intratumour heterogeneity and distinct subpopulations, 
and it is possible to enumerate and quantify immune 
infiltration in tumour tissues [8, 9]. Importantly, the het-
erogeneous make-up of immune cell infiltrates is a key 
factor for therapy response and prognosis in HCC and 
other tumour types [10–14]. Unfortunately, scRNA-seq is 
relatively expensive, so only a limited number of sample 
datasets were available. However, the information from 
scRNA-seq can be very meaningful for exploring the 
characteristics of each cell subpopulation from bulk sam-
ples and the interaction of each cell in the TIME [15–17].

In the present study, distinct cell subpopulations 
between tumour tissues and normal control tissues were 
identified from HCC scRNA-seq datasets in the Gene 
Expression Omnibus (GEO) database. The weighted gene 
coexpression network analysis (WGCNA) algorithm was 
used to explore the coexpression network and key mod-
ules most closely related to tumours based on the Cancer 
Genome Atlas (TCGA) expression profile data of tumour 
samples and normal samples. Based on the integration of 
scRNA-seq and bulk RNA-seq data, we screened the key 
genes related to immune cell subsets in HCC. Next, we 
employed univariate Cox and least absolute shrinkage and 
selection operator (LASSO) Cox regression to construct a 
risk model, which was demonstrated to have great poten-
tial as a biomarker for prognosis and to have excellent pre-
dicted immunotherapeutic efficacy for patients with HCC.

Methods
Data source and preprocessing
The HCC scRNA-seq dataset GSE149614 was down-
loaded from the GEO database and included 10 

primary tumour (PT) patients, 2 portal vein tumour 
thrombus (PVTT) patients, 1 metastatic lymph node 
(MLN) patient and 8 normal liver tissue (NLT) patients. 
The original data contained a total of 25,479 genes and 
71,915 cells. The percentage of mitochondria and rRNA 
was calculated through the PercentageFeatureSet func-
tion, and the genes expressed by each cell were greater 
than 500 and less than 8000, the selection criteria 
was showed in Additional file  2: Figure S1. The mito-
chondrial content was less than 30%. In addition, the 
number of UMIs in each cell was at least 500. After fil-
tration, there were 71,139 cells.

Public clinical data and gene expression information 
were retrieved from the TCGA database (https://​portal.​
gdc.​cancer.​gov/) and International Cancer Genome Con-
sortium (ICGC) database (https://​xena.​ucsc.​edu/). In total, 
366 samples in the TCGA-LIHC cohort and 232 samples 
in the ICGC-JP cohort were used for further analysis.

scRNA‑seq data clustering dimension reduction
First, we normalize the merged data through log-nor-
malization and find the first 2000 highly variable genes 
through the FindVariableFeatures function (identify 
variable features based on the variance stabilization 
transformation (“vst”)). At the same time, all genes 
were scaled using the ScaleData function, and RunPCA 
function was used to reduce the dimension of PCA for 
the first 2000 highly variable genes screened above. We 
choose dim = 50 and clustered the cells through the 
“FindNeighbors” and “FindClusters” functions (resolu-
tion = 0.1) to find the cell clusters. Next, we selected the 
top 50 principal components to further reduce dimen-
sionality using the UMAP method. UMAP is a method 
of data dimensionality reduction, which assumes that 
the available data samples are uniformly distributed 
in the topological space (Manifold), and these limited 
data samples can be approximated (Approximation) 
and mapped (Projection) to a low-dimensional space. 
To put it simply, the UMAP algorithm is considered to 
be a principle similar to t-SNE, which is an algorithm 
that maps the high-dimensional probability distribu-
tion to a low-dimensional space, so as to achieve the 
effect of dimensionality reduction. Mainly based on the 
theory of manifold theory and topology algorithm, the 
dimensionality of high-dimensional data is reduced to 
form the input features of other classification models. 
Finally, we used the FindAllMarkers function to screen 
the marker genes of 25 subgroups with logfc = 0.5 (dif-
ferential multiples) and Minpct = 0.35 (the expression 
ratio of the least differential genes). Finally, we used the 
corrected p < 0.05 to screen the marker gene.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
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Cell‑type identification by estimating relative subsets 
of RNA transcripts (CIBERSORT)
CIBERSORT is a method based on the input matrix 
of a gene expression file to accurately estimate the 
relative proportions of various cell subsets in tissues 
[18, 19]. Here, we used CIBERSORT analysis to com-
pare differences in various immune cells in distinct 
groups. Spearman correlation analysis was performed 
to explore the association between the risk score 
and infiltrating immune cells. The “ggplot2” package 
was used to visualize the differences in abundance 
in immune cells and the results of the correlation 
analysis.

Least absolute shrinkage and selection operator (LASSO)
To construct the prognostic model, a univariate Cox 
regression model identified the genes that were sig-
nificantly correlated with survival outcome. Moreover, 
LASSO analysis was employed to select reliable predic-
tors [20]. The risk score of each patient in the TCGA 
database and ICGC database was assessed using the for-
mula risk score = Σ coefficientmRNAn * expression level 
mRNAn. Then, the correlation between the risk score and 
prognosis of patients was further analysed.

Weighted gene co‑expression network analysis (WGCNA)
WGCNA is an R software package that is used for 
weighted correlation network analysis, including for 
module identification, network generation, gene screen-
ing, calculation of properties, and data visualization [21]. 
Here, we used cibersort’s algorithm to evaluate the score 
of each sample of TCGA bulk RNA-seq with respect 
to each cell subgroup. Each sample itself is a geomet-
ric body of multiple cell types. We performed WGCNA 
analysis on this similarity score to screen the gene mod-
ules with the highest correlation with a certain subgroup. 
[22] Highly similar modules were identified by cluster 
analysis, and the association between each module and 
intratumour cell subgroup abundance was assessed.

Tumour immune dysfunction and exclusion (TIDE)
To predict the immune checkpoint blockade response, 
Jiang et al. developed the TIDE method, which was used 
to simulate the mechanisms of tumour immune evasion 
(including T cell dysfunction and T cell exclusion) [23, 24]. 
The software is freely available online at http://​tide.​dfci.​
harva​rd.​edu. In this study, we employed TIDE to evalu-
ate the response to immunotherapy in patients. A higher 
TIDE score indicates a higher possibility of immune 

escape and poor response to immunotherapy for patients 
with HCC.

Cell culture and quantitative real‑time PCR (qRT‑PCR)
The HCC cell line SK-Hep-1 and healthy human liver cell 
line L02 were obtained from the Chinese Academy of Sci-
ences. The cells were maintained in Dulbecco’s modified 
Eagle’s medium supplemented in 10% foetal bovine serum 
(Wisent, Ottawa, ON, Canada) and 1% penicillin in humid 
conditions at 37 °C with a 5% CO2 atmosphere. The RNA 
of the cell lines L02 and SK-Hep-1 was extracted by using 
TRIzol reagent (Invitrogen), and the RevertAid First-
Strand cDNA Synthesis Kit (Thermo Fisher Scientific, 
Inc.) was used to synthesize cDNA. qRT-PCR analysis 
was performed using SYBR Green (Takara). The primer 
sequences are listed in Additional file 1: Table S1.

Statistical analysis
Prism 7.0 (GraphPad software, CA, USA) and R version 
3.5.2 were used for statistical analysis. Kaplan–Meier 
survival curves were used for survival analysis by the 
survminer R package version 2.43–3. Student’s t-test 
was carried out to analyse the significant differences 
among distinct groups. The glmnet R package was used 
for LASSO Cox regression analysis. A P-value < 0.05 
indicated statistical significance (*P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001).

Results
Definition of clusters and dimensionality reduction 
for visual representation of the cells
The overall workflow was showed in Additional file  3: 
Figure S2. We performed the “ScaleData” function to 
scale all genes extracted from the scRNA-seq dataset 
GSE149614 and performed PCA dimensionality reduc-
tion to find anchor points. Finally, 25 clusters were 
found (Additional file 3: Figure S2a and b). We screened 
the cell markers of the 25 clusters by the “FindAllMark-
ers” function (logfc = 0.5, Minpct −0.35), and the top 
5 genes with the most prominent contributions are 
shown in Additional file 4: Figure S3c. An overview of 
the single cells from four types of samples is shown in 
Fig. 1a. Cells originating from tumour tissues and nor-
mal control tissues are shown in Fig.  1b. All the cells 
were classified into 25 clusters (Fig.  1c). These iden-
tified clusters were labelled as various cell types by 
marker genes (Fig.  1d). Moreover, we downloaded the 
human cell marker gene from CellMarker (http://​biocc.​
hrbmu.​edu.​cn/​CellM​arker/) and defined 25 cell subsets 
using the clusterProfiler package enricher function. 
Information on the cell subsets is shown in Table 1.

http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
http://biocc.hrbmu.edu.cn/CellMarker/
http://biocc.hrbmu.edu.cn/CellMarker/
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Definition of cell subgroups
Notably, we found multiple subgroups of 5 cell types, 
including liver bud hepatic cells, CD4 + cytotoxic T 
cells, dendritic cells, Kupffer cells, and liver progenitor 
cells. For liver bud hepatic cell cells, the C4 subgroup 
specifically expressed the FGF19 gene, cluster 6 (C6) 
specifically expressed the PAGE2B gene, C9 specifically 
expressed the CXCL10 gene, C13 specifically expressed 
the HAMP gene, C14 specifically expressed the CCL26 
gene, C15 specifically expressed the SLCO1B3 gene, 
and the C23 subgroup specifically expressed the GAST 
gene (Fig. 2a). The specifically expressed marker genes 
of CD4 + cytotoxic T cells (Fig.  2b), Kupffer cells 
(Fig.  2c), liver progenitor cells (Fig.  2d), and dendritic 
cells (Fig.  2e) were also identified. These results indi-
cated that the specially expressed marker genes might 
be used to identify the subgroups of cells in future 
studies.

Identification of coexpression modules in HCC
To explore the characteristics of the TIME in HCC, we 
calculated the abundance of the 25 identified cell clusters 
in tumour tissues and paracarcinoma tissues from the 
TCGA database by the CIBERSORT method. We found 

that the abundances of 16 cell subgroups were different 
between tumour tissues and normal tissues, including 
liver progenitor cells (C2), liver bud hepatic cells (C4), 
liver bud hepatic cells (C6), hepatocytes (C7), exhausted 
CD8 + T cells (C8), liver bud hepatic cells (C9), myofi-
broblasts (C10), Kupffer cells (C11), liver bud hepatic 
cells (C13), liver bud hepatic cells (C14), liver bud hepatic 
cells (C15), cancer stem cells (C16), dendritic cells (C18), 
Kupffer cells (C20), monocytes (C21), and liver bud 
hepatic cells (C23) (Fig. 3a).

To further analyse the correlation between gene 
expression patterns and distinct cell subgroups in HCC, 
we used the WGCNA method to construct key modules 
based on the expression profile data of 371 tumour tis-
sues and 50 normal tissues of the TCGA-LIHC cohort. 
The results of hierarchical clustering analysis of all sam-
ples are shown in Fig. 3b. We utilized Pearson’s correla-
tion coefficient to calculate the distance between each 
gene and used WGCNA to construct a scale-free net-
work (Fig. 3c). Then, we utilized the average-linkage hier-
archical clustering method to cluster genes, and a total of 
6 modules were obtained, among which the grey mod-
ule was a gene set that would not be clustered in other 
modules (Fig.  3d). We further analysed the correlation 

Fig. 1  Overview of single cells from tumour samples and normal samples. a Umap of four different types of samples. b The sample types of the 
cells. c Umap of the 25 cell clusters. d The cell types were identified by marker genes. Abbreviations: MLN, metastatic lymph node; MTL, metastatic 
lymph node; PT, primary tumour; PVTT, portal vein tumour thrombus
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between each module and the abundances of cell sub-
groups (Fig. 3e). We found that cancer was most closely 
related to the brown module, which was most closely 
related to monocytes (C21). Additionally, to explore the 
functional annotation of the genes in the brown module, 
we performed KEGG and GO enrichment analyses. For 
the GO functional annotations of genes, 145 terms were 
enriched in biological process (BP) (FDR < 0.05). The top 
10 annotation results are shown in Additional file 4: Fig-
ure S3a. The top 10 terms enriched in molecular function 
(MF) are shown in Additional file 5: Figure S4b. The top 
10 annotation results are shown in Additional file 4: Fig-
ure S3c. The results of KEGG pathway enrichment analy-
sis of the top 10 annotations are shown in Additional 
file 4: Figure S3d.

Construction of the prognostic model based on the key 
genes
To screen key genes related to tumorigenesis, we per-
formed differential expression analysis on gene expres-
sion data from the TCGA database using the R package 
limma. A total of 3864 differentially expressed genes 
(DEGs) were identified, of which 2529 genes were 

upregulated and 495 were downregulated (Fig.  4a). 
Through overlap analysis of the upregulated genes, the 
brown module gene and the monocyte (C21) marker 
gene, we found a total of 10 genes in the brown module 
that were upregulated genes and belonged to the C21 
marker genes (Fig.  4b) and 1 gene in the brown mod-
ule that was a downregulated gene and belonged to C21 
marker genes (Fig. 4c). Then, a univariate Cox regression 
model identified 7 genes in the TCGA-LIHC cohort that 
were significantly correlated with overall survival. LASSO 
Cox regression analysis was used to further reduce the 
number of candidate genes. The change trajectory of each 
gene is shown in Fig. 4d. At the same time, before we per-
form these analyses, we have performed corresponding 
preprocessing on the TCGA data, adding 1 to the value 
of the original expression profile, and using the logarithm 
of 2 as the logarithm, and then filtering the matrix with 
the sample variance greater than 0.5. Three genes, CLTA, 
TALDO1 and CSTB, were identified and used to gener-
ate a risk model (Fig. 4e). The 3-gene model formula was 
as follows: RiskScore = 0.257 * Expression CSTB + 0.263 *    
Expression TALDO1 + 0.313 *  Expression CLTA. We further 
assessed the expression of CLTA, TALDO1, and CSTB 
in the HCC cell line SK-Hep-1 and the healthy live cell 
line LO2 by qRT-PCR. The results showed that the three 
genes were all upregulated in the HCC cell line (Fig. 4f ).

Evaluation of the predictive efficiency of the risk model 
for prognosis in TCGA‑LIHC and ICGC cohorts.
After construction of the 3-gene model, we calculated 
the risk scores based on the model for each patient in 
the TCGA-LIHC cohort and plotted the risk score dis-
tribution of the patients. We discovered that patients 
with a high risk score (n = 185) had a markedly higher 
risk of death than those with a low risk score (n = 180) 
(Fig. 5a). The results of survival analysis also showed that 
high-score patients had a poorer prognosis than low-
score patients (Fig.  5b). To further verify the predictive 
performance of our model, we tested this model in the 
ICGC database (Fig. 5c). Similarly, the high-score group 
presented a significantly shorter overall survival time 
than the low-score group (Fig. 5d). All this evidence indi-
cated that we had constructed an excellent risk model for 
prognosis.

Association between risk score and infiltrating immune 
cells in HCC
To estimate the effect of the 3-gene model on the TIME 
of HCC, we analysed the association between the risk 
score and infiltration levels of various types of immune 
cells by the ESTIMATE method. The results showed 
that the immune score was higher in the high-risk group 
than in the low-risk group, while the matrix scores in the 

Table 1  The information of 25 cells types

Cluster Cell type

0 CD4 + cytotoxic T cell

1 Kupffer cell

2 Liver progenitor cell

3 Endothelial cell

4 Liver bud hepatic cell

5 5 Memory T cell

6 Liver bud hepatic cell

7 Hepatocyte

8 Exhausted CD8 + T cell

9 Liver bud hepatic cell

10 Myofibroblast

11 Kupffer cell

12 Memory B cell

13 Liver bud hepatic cell

14 Liver bud hepatic cell

15 Liver bud hepatic cell

16 Cancer stem cell

17 B cell

18 Dendritic cell

19 CD4 + cytotoxic T cell

20 Kupffer cell

21 Monocyte

22 Liver progenitor cell

23 Liver bud hepatic cell

24 Dendritic cell
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high- and low-risk groups were not significantly different 
(Fig.  6a). Then, the correlation between the abundance 
of 22 immune cells and the risk score was calculated by 
Pearson’s correlation analysis. We found that the risk 
score was negatively correlated with the abundances of 
naïve B cells, CD4 memory resting T cells, monocytes, 
M1 macrophages, and resting mast cells (Fig. 6b–f). The 
risk score was positively correlated with the abundances 
of memory B cells, activated CD4 T cells, follicular 
helper T cells, Tregs, M0 macrophages, eosinophils and 
neutrophils (Fig. 6g–m). Based on the above results, we 
speculated that this risk model is involved in immune 
microenvironment regulation and might affect the intra-
tumoural antitumour immune response.

Immunotherapy predictive efficacy of the 3‑gene model
Here, we used TIDE software to evaluate the response 
to immunotherapy of patients in high- and low-risk 
groups. A higher TIDE prediction score represented a 
higher possibility of immune escape, indicating that the 
patients were less likely to benefit from immunotherapy. 
In TCGA-LIHC, the TIDE score of the low-risk group 
was significantly lower than that of the high-risk group 

(Fig. 7a). Furthermore, we discovered that T cell dysfunc-
tion scores were not significantly different in the high- 
and low-risk groups (Fig.  7b). The high-risk group had 
a higher T cell exclusion score than the low-risk group 
(Fig. 7c). Furthermore, the results of the correlation anal-
ysis showed that the risk score was markedly correlated 
with the TIDE score and T cell exclusion score (Fig. 7d–
f). Taken together, the evidence might demonstrate why 
patients with high risk scores have a poor prognosis and 
why patients with high risk often exhibit a poor response 
to immunotherapy.

Clinical characteristics associated with the 3‑gene 
signature in HCC
After confirming the performance of the 3-gene signa-
ture in predicting the response to immunotherapy of 
patients with HCC, we subsequently investigated the 
association between clinical characteristics and the 
risk score. Although the differences in risk score by sex, 
M stage, N stage, and age were not statistically signifi-
cant (Fig.  8a–d), the risk score was significantly differ-
ent among tumour and T stages, and the risk score was 
higher in more advanced HCC (Fig. 8e and f ).

Fig. 2  Violin diagram of characteristic gene expression of 5 subgroups. The specifically expressed marker genes of liver bud hepatic cells (a), 
CD4 + cytotoxic T cells (b), Kupffer cells (c), liver progenitor cells (d), and dendritic cells (e)
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To further explore the clinical application of the 3-gene 
model in predicting the prognosis of patients. We utilized 
univariate and multivariate Cox regression analyses in 
TCGA-LIHC. The results showed that the risk score was 
significantly correlated with prognosis (Fig. 8g). In addi-
tion, multivariate Cox regression analysis further con-
firmed that the risk score was an independent risk factor 
for HCC (Fig. 8h). Collectively, these results confirm that 
the 3-gene signature has excellent prognostic efficiency.

Discussion
scRNA-seq has emerged as a useful tool for transcrip-
tional classification of cell types in various cancers. Here, 
we performed HCC scRNA-seq data from the GEO data-
base to define the cell subpopulations in tumours, and 
we found multiple subgroups of 5 cell types, including 
liver bud hepatic cells, CD4 + cytotoxic T cells, dendritic 

cells, Kupffer cells, and liver progenitor cells. Specifically 
expressed gene markers might serve as specific mark-
ers to identify cell subgroups in a large set of samples. In 
addition, we screened the key genes related to immune 
cell subsets in HCC and constructed a three-gene risk 
model that had excellent prognostic efficiency and might 
serve as a biomarker for immunotherapy response. Simi-
larly, Liang et  al. [22] used scRNA-seq to analyse the 
heterogeneity of tumour immune cells and established a 
risk model for predicting the prognosis of ovarian cancer 
patients. Zheng et al. [17] screened six hub genes related 
to prognosis from GEO oesophageal squamous cell car-
cinoma (ESCC) datasets and TCGA ESCC datasets, and 
the results of scRNA-seq showed that the expression 
of hub genes was significantly higher in normal tissues 
and cells. Further Kaplan–Meier survival analysis and 
immune infiltration analysis indicated that the hub genes 

Fig. 3  Identification of co-expression modules in HCC. a The abundance of the 25 identified clusters in tumour tissues and paracarcinoma tissues 
from the TCGA database by the CIBERSORT method. b Sample clustering to detect outliers. c The scale-free fit index for soft-thresholding powers. d 
Constructing a gene dendrogram based on different metrics. e Correlation analysis between 6 modules and each cell subset. Abbreviations: HCC, 
hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; CIBERSORT, Cell-type identification by estimating relative subsets of RNA transcripts
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Fig. 4  Construction of the risk model based on the key genes. a The volcano map of difference analysis in the TCGA-LIHC cohort. b Venn diagram 
of tumorigenesis-related upregulated genes, monocyte (C21) marker genes and brown module genes. c Venn diagram of tumorigenesis-related 
downregulated genes, monocyte (C21) marker genes and brown module genes. d LASSO coefficient profile plots of each independent variable. e 
The partial likelihood deviance for the LASSO Cox regression analysis. f The expression of CLTA, TALDO1, and CSTB in the HCC cell line SK-hep-1 and 
the normal live cell line LO2, as determined by qRT-PCR. Abbreviations: TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; HCC, 
hepatocellular carcinoma; qRT-PCR, quantitative real time polymerase chain reaction

Fig. 5  Evaluation and validation of the predictive efficacy of the prognostic model. a The risk score distribution, patient status and mRNA 
expression heatmap for the TCGA-LIHC cohort. b Kaplan–Meier curves of the 3-gene model for the TCGA-LIHC cohort. c The risk score distribution, 
patient status and mRNA expression heatmap for the ICGC cohort. d Kaplan–Meier curves of the 3-gene model for the ICGC cohort. Abbreviations: 
TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; ICGC, International Cancer Genome Consortium
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were promising biomarkers for ESCC diagnosis and 
prognosis [17]. scRNA-seq was also adopted to decipher 
the cell-to cell interactions inside gliomas, and the identi-
fied autocrine ligand-receptor signal pairs were found to 
significantly affect the prognosis of glioma patients [25]. 
Taken together, the findings indicate that scRNA-seq 
technology could help to effectively dissect the TIME and 
identify potential prognostic biomarkers.

Here, we performed differential analysis on gene 
expression data from the TCGA database. Three 
upregulated DEGs (cystatin B (CSTB), transaldolase 
1 (TALDO1) and clathrin light chain A (CLTA)) that 
belonged to monocyte (C21) marker genes might be 
applied as potential biomarkers for immunotherapy. 
CSTB, a member of the cystatin superfamily, is an 

inhibitor of cysteine proteases. Dysregulated expres-
sion of CSTBA has been reported to be involved in vari-
ous cancers. For example, the expression of CSTBA was 
increased in serum and might be an early-stage diag-
nostic biomarker for HCC [26] and ovarian epithelial 
tumours [27]. CSTB has also been reported to serve as 
a prognostic biomarker for bladder cancer [28], lung 
cancer and colorectal cancer [29, 30]. Wu et al. reported 
that the expression of TALDO1 was increased in upper 
tract urothelial carcinoma tissues and that upregulated 
TALDO1 expression was correlated with large tumour 
size, advanced stage, and distant metastases [31]. In addi-
tion, genetic polymorphisms in TALDO1 were closely 
correlated with squamous cell carcinoma of the head 
and neck [32]. A better understanding of the molecular 

Fig. 6  ESTIMATE was performed to calculate the immune and matrix scores for each patient. a Comparison of the immune score and matrix score 
in high- and low-risk groups. b–m Correlation analysis of immune cell abundance and risk score
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mechanisms of the 3-gene model in HCC pathogenesis 
to validate its clinical applications is needed for the fur-
ther development of novel diagnostic and prognostic 
biomarkers.

In this work, we jointly analysed scRNA-seq data and 
the gene expression profile of bulk RNA-seq data. The 
results both improve our understanding of the hetero-
geneity of the TIME at the single-cell level and provide 
a 3-gene model based on prognosis-related genes. Addi-
tionally, the research strategies used in this study might 
also be suitable for other cancers. However, there were 
several limitations in this study. First, the size of sample 
was relatively small. Second, the functional experiments 

and underling molecular mechanism of the 3 genes are 
needed. Third, the model was generated with HCC tis-
sues, which cannot diagnose tumour at the early stage. 
In future studies, we plan to detect the expression of the 
three genes in circulating immune cells, which might 
contribute to increasing the early diagnosis rate for HCC.

Conclusion
By integration of bulk RNA-seq and scRNA-seq, we 
analysed the heterogeneity of the TIME at the single-
cell level, and we constructed a 3-gene model that could 
accurately evaluate the survival outcome and immuno-
therapy response of patients with HCC.

Fig. 7  Analysis of the difference in TIDE scores between high- and low-risk groups. a In TCGA-LIHC, the TIDE score was low in the low-risk group. b 
T cell dysfunction scores were not significantly different in the high- and low-risk groups. c The high-risk group had a higher T cell exclusion score 
than the low-risk group. d–f Correlation analysis between the risk score and the TIDE score, T cell dysfunction score and T cell exclusion score. 
Abbreviations: TIDE, Tumour immune dysfunction and exclusion; TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma
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