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Abstract 

Objective:  Head and neck squamous cell carcinoma (HNSCC) is a major threat to public health. Pyroptosis is a form 
of inflammatory programmed cell death that is still incompletely understood. The role of pyroptotic cell death in 
HNSCC remains to be fully defined. As such, the present study was developed to explore the potential prognostic util-
ity of a pyroptosis-related gene (PRG) signature in HNSCC.

Methods:  PRG expression patterns and the associated mutational landscape in HNSCC were analyzed, after which a 
6-gene prognostic model was constructed through least absolute shrinkage and selection operator (LASSO) and Cox 
regression analyses using the TCGA dataset, followed by validation with two GEO datasets (GSE41643 and GSE65858). 
The relative expression of the genes in the prognostic model was assessed via RT-qPCR in tumor and paired adjacent 
normal tissue samples from a 32-patient cohort. Potential predictors of patient outcomes associated with this 6-gene 
model were identified through topological degree analyses of a protein–protein interaction network. Moreover, the 
prognostic value of NLRP3 as a predictor of HNSCC patient prognosis was established through immunohistochemical 
(IHC) analyses of samples from 176 HNSCC patients. Lastly, in vitro studies were performed to further demonstrate the 
relevance of NLRP3 in the context of HNSCC development.

Results:  Differentially expressed PRGs were able to readily differentiate between HNSCC tumors and normal tissues. 
Risk scores derived from the 6-gene PRG model were independent predictors of HNSCC patient prognosis, and genes 
that were differentially expressed between low- and high-risk groups were associated with tumor immunity. RT-qPCR 
assays also showed the potential protective role of NLRP3 in HNSCC patients. IHC analyses further supported the 
value of NLRP3 as a predictor of HNSCC patient outcomes. Invasion and migration assays demonstrated the potential 
role of NLRP3 in the inhibition of HNSCC development.

Conclusions:  Overall, these results highlight a novel prognostic gene signature that offers value in the context of 
HNSCC patient evaluation, although additional research will be essential to elucidate the mechanisms linking these 
PRGs to HNSCC outcomes.
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Introduction
Head and neck cancer is the sixth most prevalent form 
of cancer globally, with an estimated 830,000 diagno-
ses and 379,000 deaths occurring annually [1, 2]. Over 
90% of these cases are diagnosed as head and neck 
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squamous  cell  carcinoma (HNSCC), which arises from 
the mucosal epithelium of the oral cavity, pharynx, and 
larynx [3, 4]. Primary treatments for HNSCC patients 
include various combinations of surgery, radiotherapy, 
and chemotherapy depending on disease staging [5]. 
As there are no reliable approaches to systematically 
screening for this disease, a large percentage of HNSCC 
patients are diagnosed with advanced disease [6]. While 
there have been recent advances in treatment strate-
gies for these patients, their 5-year survival rates remain 
low, underscoring the importance of developing new 
approaches to diagnosing and monitoring HNSCC in an 
individualized manner.

Biomarkers are specific indicators of particular physi-
ological, pathological, or pharmacological processes that 
can enable effective patient identification and moni-
toring [7]. The advent of high-throughput sequencing 
technologies has spurred growing interest in the iden-
tification of specific biomarkers capable of guiding the 
prognostic evaluation and treatment of various cancers 
[8–10]. Many predictive biomarkers associated with 
HNSCC have been studied to date and may be of value 
as predictors of long-term patient prognosis and targeted 
treatment outcomes [11–13]. Most of these biomarkers, 
however, have yet to be subjected to any robust clinical 
validation or drug targeting efforts [14]. Prognostic bio-
marker models that are better able to predict HNSCC 
patient prognosis and treatment outcomes in a reliable 
manner are thus urgently needed to improve survival 
outcomes for affected individuals.

Pyroptosis is a form of inflammatory programmed cell 
death distinct from apoptosis [15]. Also known as cellu-
lar inflammatory necrosis, pyroptosis results in immu-
nostimulatory molecule release from tumor cells [16]. 
At the molecular level, pyroptosis is associated with dis-
tinctive molecular features such as chromatin condensa-
tion, DNA fragmentation in the absence of DNA damage, 
and pore formation [17, 18]. Pyroptotic cell death has 
been suggested to play contrasting roles as an inhibitor 
or promoter of oncogenic progression, and it is closely 
correlated with cellular migration and proliferation [19–
21]. Pyroptosis can be induced in response to specific 
microRNAs (miRNAs), chemotherapeutic drug treat-
ments, or inflammasome activation, suppressing tumor 
growth [16]. Conversely, pyroptosis-related inflammatory 
cytokine production can give rise to a microenvironment 
that is better suited to tumor cell growth [22]. Pyropto-
sis-related gene (PRG) signatures can offer insight into 
prognostic outcomes across a range of cancer types [23, 
24]. Treatment with TPL can activate GSDME-medi-
ated pyroptosis by inhibiting the expression of HK-II in 
the mitochondria in HNSCC [25]. Although PRGs have 
been shown to have the prognostic value when predicting 

HNSCC patient outcomes [26], PRG-mediated immune 
infiltration and the aberrant changes in the biological 
behavior of cancer cells remain poorly understood.

Herein, we compared PRG expression between con-
trol and HNSCC tumor tissue samples to establish the 
value of these genes as predictors of patient outcomes. 
A novel PRG-based prognostic model for HNSCC was 
then developed and validated through both bioinfor-
matics analyses of extant datasets and additional clinical 
samples.

Materials and methods
Data processing
RNA-sequencing (RNA-seq) data and matching clin-
icopathological findings pertaining to 506 patients with 
HSCC were downloaded from The Cancer Genome Atlas 
(TCGA) on Aug 10, 2021 (Additional file  1: Table  S1). 
Somatic and copy number variation (CNV) data were 
downloaded from the TCGA and UCSC Xena websites. 
RNA-seq and clinical data used for external validation 
were downloaded from the GEO database (ID: GSE41643 
and GSE65858). R (v 4.0.1) and the R Bioconductor pack-
ages were used for all analyses.

Differentially expressed PRG identification
In total, the 33 PRGs listed in Additional file 2: Table S2 
were identified based on prior reviews [16, 27]. Given 
that there were 31 annotated PRGs in the TCGA data-
base, the differences in the expression of these genes 
between HNSCC patients and healthy controls were 
established using the ‘limma’ package. The Search Tool 
for the Retrieval of Interacting Genes (STRING) database 
was further utilized to construct a protein–protein inter-
action (PPI) network incorporating these PRGs based on 
a minimum interaction score of 0.7.

Functional enrichment analyses
The R ‘ggplot2’ package was utilized to conduct Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses.

Prognostic PRG model development
A Cox regression analysis was used to assess the prog-
nostic value of PRGs in HNSCC, with 6 of these signifi-
cantly prognostic genes being retained for a subsequent 
prognostic model development through a LASSO Cox 
regression analysis. HNSCC patients from the TCGA 
cohort were separated into low- and high-risk groups 
based upon the median risk score value in this cohort, 
with Kaplan–Meier analyses subsequently being used to 
compare overall survival (OS) outcomes between these 
groups. Validation of this model was performed using the 
GSE41643 and GSE65858 datasets, and risk scores were 
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calculated using the same formula employed for TCGA 
patient analyses.

Real‑time quantitative PCR (qPCR) analysis
RNA was extracted from cells using the Trizol reagent 
and reverse transcribed using the PrimeScript RT Rea-
gent Kit (Takara Bio, Kusatsu, Japan). All qPCR analyses 
were performed in triplicate using the SYBR Green PCR 
Master Mix (Takara Bio) and detected using an Applied 
Biosystems 7900 Real-Time PCR System (Thermo Fisher 
Scientific, Waltham, MA, USA). The primer sequences 
used in this study are listed in Additional file  3: Sup-
plementary Materials. Gene expression values were 
normalized to the endogenous control, and the 2−ΔΔCt 
method was used for the relative quantification of gene 
expression. Primers used were as follows: GAPDH: for-
ward 5′-GAA​GGT​GAA​GGT​CGG​AGT​C-3′ and reverse 
5′-GAG​ATG​GTG​ATG​GGA​TTT​C-3′; NLRP1: forward 
5′-AGC​TTC​TGC​TCG​CCA​ATA​AAG-3′ and reverse 
5′-CCA​GGT​ATG​GAG​GGC​TAG​GT-3′; NLRP2: for-
ward 5′-TTC​TGC​GTC​AAG​CAC​TGT​CG-3′ and reverse 
5′-GGA​TCT​CTC​AAC​CTC​GGC​GT-3′; NOD2: forward 
5′-CAA​TGA​CGA​TGC​GGA​CAC​TG-3′ and reverse 
5′-GCT​GAA​TGG​GAA​GAC​AAA​GAGAA-3′; PLCG1: 
forward 5′-CTC​TAT​GGA​ATG​GAA​TTT​CGCC-3′ and 
reverse 5′-GGA​GCC​ACC​TCT​CAA​TCT​GC-3′; NLRP3: 
forward 5′-AGC​ACT​AAT​CAG​AAT​CTC​ACGCA-3′ and 
reverse 5′-TGT​CTA​ATT​CCA​ACA​CCT​GAAGC-3′; IL-6: 
forward 5′-TGC​CAG​CCT​GCT​GAC​GAA​-3′ and reverse 
5′-AGC​TGC​GCA​GAA​TGA​GAT​GA-3′.

Patients
In total, 176 primary HNSCC patients undergoing sur-
gical treatment at the Department of Oral and Maxillo-
facial Surgery of the Affiliated Stomatological Hospital 
of Nanjing Medical University between 2010 and 2015 
were recruited for this study. WHO classification criteria 
were used for tumor grading, while UICC and American 
Joint Commission on Cancer (AJCC) criteria were used 
for clinical and TNM grading. The Nanjing Medical Uni-
versity Ethics Committee approved this study, which was 
consistent with the Declaration of Helsinki. All patients 
provided written informed consent to participate.

Immunohistochemical (IHC) staining
Paraffin-embedded HNSCC tumor tissue sections (4 μm) 
were treated with xylene for deparaffinization, rehydrated 
with an ethanol gradient, and treated for 20 min with 3% 
hydrogen peroxide. Following antigen retrieval, samples 
were blocked with normal goat serum and then probed 
overnight with anti- NLRP3 (Proteintech, 19771-1-AP). 
An HRP-polymer anti-rabbit Kit and a DAB Detection 
Kit (Fuzhou Maixin Biotech, Fuzhou, China) were then 

used to stain samples, and hematoxylin was employed for 
counterstaining. An ethanol gradient was then used to 
dehydrate samples, which were clarified with xylene and 
mounted using neutral gum.

Pathological staining analyses
Two pathologists independently analyzed pathologi-
cal samples. NLRP3 staining was assessed based upon 
immunoreactivity score (IRS) values calculated as: 
IRS = IS × PS. IS scoring was as follow: 0, negative; 1, 
weak; 2, moderate; 3, strong. PS scoring was as follows: 
0, negative; 1, < 10%; 2, 11–50%; 3, 51–80%; 4, > 80% posi-
tive staining. Patients were then separated into low- and 
high-expression subgroups based on IRS scores of 0–4 
and > 4, respectively.

Cell proliferation assay
5-Ethynyl-2′-deoxyuridine (EdU) staining was used to 
assess proliferation. Briefly, cells were incubated with 
complete DMEM medium containing 50 μM EdU (Ribo-
Bio) at 37  °C in a 5% CO2 incubator for 2 h. Then, cells 
were washed with PBS, fixed with 4% paraformaldehyde 
for 30 min, neutralized with 50 μL 2 mg/mL glycine, and 
permeabilized using 0.5% Triton X-100. After washing 
with PBS, Apollo dye was added to each well, and then 
cells were incubated in the dark for 30 min at room tem-
perature. Finally, Hoechst 33342 was applied for nuclear 
staining. Images were then captured using a fluorescence 
microscope (Leica Microsystems, Mannheim, Germany).

Cell migration and invasion assays
Cell migration and invasion assays in  vitro were per-
formed using wound healing and transwell assays. In 
the wound healing assay, cells were plated in six-well 
plates and grown to 90% confluence. Artificial wounds 
were created in the monolayer surface using a 10 μl ster-
ile pipette tip, and then the cells were then incubated in 
complete medium and allowed to migrate into the open 
wound area. Images of the same area of the wound were 
taken at 0, 12, and 24 h to determine the wound closure 
rate. Cell invasion assays were performed using Tran-
swell inserts, and the Transwell inserts with the porous 
membrane (pore size 8  μm, Miliipore), which has been 
precoated with Matrigel (Corning, Bedford, MA, USA) 
for at least 1 h at 37 °C. Approximately 1 × 105 HN6 cells 
or 2 × 105 Cal27 cells were seeded per well in the upper 
chambers and incubated with complete medium in the 
lower chamber. After 24 h, the Transwell chambers were 
fixed with 4% PFA and stained with crystal violet (Sigma-
Aldrich, St. Louis, MO, USA). Cells attached to the lower 
layer were then imaged (Olympus, Tokyo, Japan), every 
experiment was repeated for three times, and every 
chamber were counted in 5 randomly selected fields.
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Results
Analysis of the PRG landscape in HNSCC
We began by assessing CNVs evident in 31 annotated 
PRGs from the TCGA HNSCC dataset, revealing altera-
tions to be present in all of these genes. Of these, the 
highest CNV amplification frequency was observed for 
GSDMC, while the highest frequency of deletion was 
observed for GPX4 (Fig.  1A). The chromosomal loca-
tions of these PRGs were next established (Fig.  1B). Of 
506 patients in the TCGA HNSCC cohort, 124 (24.51%) 
harbored somatic mutations in these PRGs. CASP8 was 
found to be mutated in 8% of these HNSCC patients, 
with missense and nonsense mutation being the most 
prevalent mutation type, thus suggesting a potential role 
of CASP8 in these HNSCC patients (Fig.  1C). Among 
all the mutations observed in identified PRGs, missense 
mutations were the most common (Fig.  1D), with C > T 
mutations being the most frequently detected form of 
single nucleotide polymorphism (SNP) in these patients. 
Next, PRG expression levels were compared between 
HNSCC tumors and control tissues, leading to the iden-
tification of 21 differentially expressed genes (DEGs) 
(Fig. 2A), of which 18 (CASP1, CASP3, CASP5, CASP6, 
CASP8, GSDMB, GSDMD, GSDME, IL-1B, NLRC4, 
NLRP1, NLRP6, NLRP7, NOD1, PLCG1, PYCARD, 
SCAF11, and TNF) were upregulated in tumors and 
three (CASP9, ELANE, and IL-18) were downregulated 
(Fig. 2B). A PPI network was then constructed to explore 
interactions among these PRGs in HNSCC (Fig. 2C), and 
a PRG correlation network was generated with positive 
and negative correlations being shown in red and blue, 
respectively (Fig. 2D). Overall, in light of CASP8 exhibit-
ing the highest mutation rate among these PRGs and its 
observed upregulation in tumor tissues, the detailed etio-
logical role of CASP8 in HNSCC development may war-
rant further study.

PRG‑based HNSCC patient clustering and functional 
enrichment analyses
To better understand the relationship between PRG 
expression and HNSCC, we conducted the consensus 
clustering of HNSCC patients from the TCGA data-
set. Of tested values (2–10), we found that a cluster-
ing variable (k) value of 2 was associated with maximal 
intragroup correlations while maintaining low inter-
group correlations. As such, these 506 HNSCC patients 
were effectively separated into two PRG-based clusters 
(Fig.  3A). When gene expression and clinical profiles 
were compared between these two clusters (C1 and 
C2), gender was the only discrepant feature (Fig.  3B). 
Overall survival (OS) did not differ significantly 

when comparing patients in these clusters (P = 0.554, 
Fig. 3C).

GO enrichment analyses of these 31 PRGs primar-
ily revealed them to be associated with the positive 
regulation of cytokine production and interleukin-1 
production (Fig.  3D). KEGG enrichment analyses fur-
ther highlighted a role for these PRGs in the NOD-like 
receptor signaling and Salmonella infection pathways 
(Fig. 3E).

PRG‑associated prognostic model development
Data pertaining to 500 HNSCC patients for whom sur-
vival outcomes were available in the TCGA cohort were 
used to guide prognostic model development. Initial 
univariate Cox regression analyses identified 6 PRGs 
(IL-6, NLRP1, NLRP2, NLRP3, NOD2, and PLCG1) 
that were significantly associated with patient survival 
(P ≤ 0.1), of which IL-6 and NLRP2 were associated 
with risk increases (HR > 1), whereas NLRP1, NLRP3, 
NOD2, and PLCG1 were protective (HR < 1) (Fig. 4A). 
Next, least absolute shrinkage and selection opera-
tor (LASSO) (Fig.  4B, C) and Cox regression analyses 
(Fig.  4D) were utilized to construct a 6-gene model 
based on an optimal λ value. This model was as fol-
lows: risk score = (0.0871*IL6 exp.) + (0.3764*NLRP1 
exp.) + (0.0595*NLRP2 exp.) + (0.3820*NLRP3 
exp.) + (0.2357*NOD2 exp.) + (0.1371*PLG1 exp.). 
These HNSCC patients were then stratified into low- 
and high-risk groups based upon median risk score 
values (Fig.  4E). In a principal component analysis 
(PCA), low- and high-risk patients were readily sepa-
rated into two clusters (Fig.  4F). High-risk HNSCC 
patients exhibited poorer OS outcomes relative to 
low-risk patients (P < 0.001) (Fig.  4G). Time-depend-
ent receiver operating characteristic (ROC) analyses 
were also utilized to assess the specificity and sensitiv-
ity of this model, revealing respective area under the 
ROC curve (AUC) values for 1-, 2-, and 3-year survival 
outcomes of 0.610, 0.654, and 0.703 (Fig. 4H). In sum-
mary, based on the Cox regression analysis, we further 
demonstrated the potential protective roles of NLRP1, 
NLRP3, and NOD2 as predictors of patient outcomes 
in a prognostic model.

External risk signature validation
To validate the risk signature developed above, data 
pertaining to 367 HNSCC patients from the GSE41643 
and GSE65858 datasets were utilized. Batch effects 
between these datasets were reduced with the ‘Com-
Bat’ algorithm. These patients were then separated 
into high-risk (n = 190) and low-risk (n = 177) groups 
based upon the median risk scores from the TCGA 
cohort (Fig.  5A). PCA analysis revealed that these 
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Fig. 1  Landscape of the genetic and expression variation of PRGs in HNSCC. A The CNV frequency of 31 PRG in the HNSCC cohort. The height of 
the column represented the CNV frequency. B The location of PRGs on chromosomes in TCGA cohort. C The mutation frequency of 31 PRGs in 
HNSCC cohort. D The mutation classification of the 31 PRGs in TCGA cohort
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two subgroups were appropriately separated from one 
another (Fig.  5B). Significant differences in OS were 
evident between low- and high-risk HNSCC patient 
groups (P = 0.002) (Fig.  5C). ROC curve analyses fur-
ther confirmed the predictive accuracy of this model, 
with respective AUC values pertaining to 1-, 2-, and 
3-year survival outcomes of 0.611, 0.601, and 0.558 
(Fig. 5D).

Analysis of risk score prognostic value and predictive 
nomogram construction
Univariate and multivariate analyses were next per-
formed to explore the prognostic utility of the risk 
score developed above. In univariate analyses, this 

risk score was able to independently predict survival 
outcomes in the TCGA and GEO datasets (TCGA, 
HR = 2.060; GEO, HR = 1.714) (Fig.  6A, D). In mul-
tivariate analyses, risk scores were similarly able 
to independently predict HSCC patient progno-
sis (TCGA, HR = 1.977, GEO, HR: 1.910) (Fig.  6B, 
E). When a heatmap was constructed incorporating 
clinical findings from the TCGA (Fig.  6C) and GEO 
(Fig.  6F) cohorts, we observed diverse gender distri-
butions between low- and high-risk patients in GEO 
cohorts (P < 0.05). We then constructed a nomogram 
incorporating all independent prognostic variables 
from multivariate regression analyses, and we found 
that this model was able to effectively predict 1-, 

Fig. 2  Expressions of the 31 pyroptosis-related genes and the interactions among them. A Heatmap (blue: low expression level; red: high 
expression level) of the pyroptosis-related genes between the normal (N, brilliant blue) and the tumor tissues (T, red). B The expression of 31 PRG 
in HNSCC and normal tissues, Tumor, red; Normal, blue. The upper and lower ends of the boxes represented the interquartile range of values. The 
lines in the boxes represented median value. C PPI network showing the interactions of the pyroptosis-related genes (interaction score = 0.7). D The 
correlation network of the pyroptosis-related genes (red line: positive correlation; blue line: negative correlation. The depth of the colors reflects the 
strength of the relevance). P values were showed as: *P < 0.05; **P < 0.01; ***P < 0.001
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3-, and 5-tear OS in both GEO and TCGA cohorts 
(Fig.  6G–I). All these results further validated the 
accuracy of our model in the context of HNSCC 
patient prognostic evaluation.

The relationship between prognostic PRGs and immune 
functionality
Pyroptosis has been reported to be associated with the 
infiltration of the immune cells in various diseases. 
For example, PRG-induced macrophage infiltration 
was shown to be related to the release of inflamma-
tory mediators, thereby inducing acute liver fail-
ure. Moreover, in the pyroptosis-activated immune 

Fig. 3  Tumor classifications and functional enrichments of PRGs in HNSCC. A 506 HNSCC patients were grouped into two clusters according to the 
consensus clustering matrix (k = 2). B Heatmap of the clinicopathologic characters of the two clusters classified by these DEGs. C Kaplan–Meier OS 
curves for the two clusters. D The enriched item in gene ontology analysis (BP biological process, CC cellular component, MF molecular function.). E 
The enriched item in Kyoto Encyclopedia of Genes and Genomes analysis. P value was showed as: *P < 0.05
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microenvironment, CD8 + T cells and NK cells can 
both contribute to the generation of anti-tumor immu-
nity [28, 29]. To better understand the crucial role 
of PRGs in the development of the tumor immune 
microenvironment, single-sample gene set enrich-
ment analysis (ssGSEA) scores were next used to 
compare enrichment scores pertaining to 16 immune 
cell types and 13 immune-related pathways between 
high- and low-risk HNSCC patients in the TCGA and 
GEO validation cohorts used above. High-risk patients 
were found to exhibit decreased iDC infiltration in 
the TCGA cohort (Fig.  7A), while NK cell infiltra-
tion was increased and macrophage infiltration was 
decreased in high-risk patients from the GSE65858 
cohort (Fig. 7B). No significant differences in immune 
status were evident in the TCGA or GSE41643 
cohorts (Fig.  7D, F), while cytolytic activity and 

inflammation-promoting functionality were enriched 
among high-risk individuals in the GSE65858 cohort 
(Fig. 7E).

When correlations between the 6 prognostic PRGs 
defined above and immune infiltration were assessed 
with the TIMER database, NLRP3 was found positively 
correlated with B cell, CD8 + T cell, CD4 + T cell, 
macrophage, neutrophil, and dendritic cell abundance 
(Fig. 8).

Assessment of differential PRG expression in HNSCC 
patients
Next, we recruited an independent cohort of 32 
HNSCC patients consisting of 13 females and 19 males 
(40–66 years old), and sampled tumor tissues as well as 
paired normal epithelial tissues from these individuals 
for RT-qPCR analysis. After evaluating gene expression 

Fig. 4  Construction of the risk signature in TCGA cohort. A Univariate cox regression analysis of OS for each pyroptosis-related gene, and 6 genes 
with P ≤ 0.1. B LASSO regression of the 6 OS-related genes. C Cross-validation for tuning the parameter selection in the LASSO regression. D Cox 
regression analysis for constructing the 6-gene prognostic model. E The survival status for each patient (low-risk population: on the left side of 
the dotted line; high-risk population: on the right side of the dotted line) (upper panel). Distribution of patients based on the risk score (lower 
panel). F PCA plot for HNSCC based on the risk score. G Kaplan–Meier curves for the OS of patients in the high- and low-risk groups. H ROC curves 
demonstrated the predictive efficiency of the risk score
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in our prognostic model, we demonstrated that NLRP2 
and NLRP3 were significantly downregulated in 
HNSCC tissues in this patient cohort (Fig.  9). Given 
that NLRP2 was significantly associated with increased 
risk level (HR > 1) and NLRP3 was a protective gene 
(HR < 1) (Fig.  4A), our results further supported the 
independent prognostic value of NLRP3 when predict-
ing HNSCC patient outcomes.

Lower expression of NLRP3 is related to a poorer HNSCC 
patient prognosis
Topological degree analyses of the 31 PRGs in the PPI 
network developed above led to the selection of the top 
8 of these genes, of which only NLRP3 was included in 
our prognostic gene signature (Fig.  10A). Given that the 
hazard ratio of NLRP3 in the prognostic model was 0.68 
(P = 0.039), we additionally conducted IHC analyses of 
NLRP3 staining in samples from 176 patients with HNSCC 
(Fig.  10B), the results demonstrated that the NLRP3 was 
significantly correlated with tumor size (P = 0.023). How-
ever, there was no significant relationship between NLRP3 

Fig. 5  External validation of the risk signature in GEO cohort. A The survival status for each patient in validation cohort (low-risk population: on the 
left side of the dotted line; high-risk population: on the right side of the dotted line) (upper panel). Distribution of patients in the GEO cohort based 
on the median risk score in the TCGA cohort (lower panel). B PCA plot for HNSCC patients in GEO cohort. C Kaplan–Meier curves for comparison of 
the OS between low- and high-risk groups. D Time-dependent ROC curves for HNSCC
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expression and gender, age, tumor location, distant metas-
tasis, pathological grade, infiltration, clinical stage, or 
recurrence (Additional file  4: Table  S3). In addition, the 

lower expression level of NLRP3 was associated with the 
poor survival of HNSCC patients (Fig. 10C, D). Together, 

Fig. 6  Construction of predictive nomogram and independent prognostic value of risk score. A, B Hazard ratio and P‐value of the constituents 
involved in univariate Cox regression analysis and multivariate analysis considering clinical the parameters and six prognostic PRGs in TCGA cohort. 
C Heatmap (blue: low expression; red: high expression) for the connections between clinicopathologic features and the risk groups in TCGA cohort. 
D, E Hazard ratio and P‐value of the constituents involved in univariate Cox regression analysis and multivariate analysis considering clinical the 
parameters and six prognostic PRGs in GEO cohort. F Heatmap for the connections between clinicopathologic features and the risk groups in GEO 
cohort. G–I Nomogram to predict the 1-year, 3-year, and 5-year overall survival rate of HNSCC patients. Calibration curve for the overall survival 
nomogram model in the discovery group. A dashed diagonal line represents the ideal nomogram. P values were showed as: *P < 0.05; ***P < 0.001
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these findings confirm the prognostic utility of NLRP3 as a 
predictor of HNSCC patient survival.

NLRP3 inhibits the invasion and migration of HNSCC cell 
lines
Next, to demonstrate the effects of NLRP3 in the con-
text of HNSCC development, we performed cell prolif-
eration, invasion, and migration assays after knocking 
down or overexpressing NLRP3 in HN6 and Cal27 cell 
lines. These results indicated that the modulation of 
NLRP3 expression levels did not significantly affect cel-
lular proliferation (Fig.  11A–C). However, Transwell 
assays demonstrated that NLRP3 knockdown resulted 
in enhanced cell invasion (Fig.  11D, F), whereas the 
overexpression of NLRP3 inhibited the invasion of HN6 
and Cal27 cells (Fig. 11E, G). Wound healing assays also 
revealed that NLRP3 significantly inhibits cellular migra-
tion (Fig. 11H). Collectively, these results suggested that 
NLRP3 can act as a tumor suppressor via inhibiting the 
invasion and migration of HNSCC cells.

Discussion
Normal physiological homeostasis is dependent on main-
taining a balance between cellular proliferation, death, 
and differentiation [16]. While apoptosis and necrosis 
were once believed to be the primary forms of cell death, 

pyroptosis, autophagy, and other mechanisms have also 
been shown to mediate a loss of cellular viability [30]. 
Pyroptotic cell death is highly inflammatory and plays a 
role in a variety of pathogenic processes [31, 32]. Inflam-
masome activation initiates pyroptosis by recruiting cas-
pase-1. Gasdermin D (GSDMD) serves as a caspase-1/11 
substrate, inducing pyroptotic cell death owing to its abil-
ity to promote non-selective pore formation within the 
plasma membrane, subsequently driving cellular swell-
ing, rupture, and the release of proinflammatory factors 
such as HMGB1, ATP, and IL-1β [16, 18, 33]. The rela-
tionship between pyroptosis and cancer is complex, given 
that this form of cell death can both drive tumor pro-
gression and impair antitumor immunity [18], while also 
inhibiting oncogenesis [34]. The mechanisms whereby 
PRGs affect HNSCC progression and survival outcomes 
remain to be clarified. Herein, we evaluated expression 
levels of 31 different PRGs in samples from HNSCC 
patients in the TCGA database, revealing 21 of these 
genes to be differentially expressed in HNSCC including 
18 that were upregulated in this oncogenic setting. GO 
and KEGG analyses demonstrated a link between PRGs 
and cytokine production, IL-1 production, NLRP sign-
aling, and Salmonella infection. These functional path-
ways were closely associated with HNSCC oncogenesis 
and progression. Salmonella infection, for example, can 

Fig. 7  Comparison of the ssGSEA scores for immune cells and immune pathways. A Comparison of the enrichment scores of 16 types of immune 
cells between low- (blue box) and high-risk (red box) group in the TCGA cohort. B, C Comparison of the enrichment scores of the immune cells 
between low- and high-risk group in two GEO cohort. D Comparison of the enrichment scores of immune-related pathways between low- and 
high-risk group in the TCGA cohort. E, F Comparison of the enrichment scores of immune-related pathways between low- and high-risk group in 
the GEO cohort
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promote TLR4/ MyD88 pathway activation and con-
sequent increases in macrophage and neutrophil infil-
tration [35]. In OSCC, targeting of the ROS/NLRP3 
inflammasome/IL-1β signaling pathway has been sug-
gested to improve outcomes associated with 5-FU adju-
vant chemotherapy [36]. These data suggest that in-depth 
PRG studies may offer improved insight into antitumor 
immunity and inflammation.

HNSCC patients exhibit poor long-term survival out-
comes, underscoring the need for more reliable bio-
markers of long-term patient prognosis and treatment 
outcomes. TNM stage, vascular invasion, and other 
traditional clinicopathological biomarkers have yielded 

unsatisfactory outcomes when used to gauge patient 
prognosis [37]. RNA-seq and other high-throughput 
sequencing technologies have led to the identification 
of a wide variety of prognostic biomarkers associated 
with different cancers [38, 39]. Recent work has shown 
individual biomarkers are ill-suited to gauging cancer 
patient prognosis. A 4-gene immune-related biomarker 
signature (PVR, TNFRSF12A, IL21R, and SOCS1) may, 
together with other clinicopathological metrics, offer 
value as a means of assessing HNSCC patient progno-
sis [40]. Wang et  al. assessed patterns of gene expres-
sion from 771 HNSCC patients in the TCGA and GEO 
databases, leading to the development of a 6-gene 

Fig. 8  The association between six prognostic PRGs and immune infiltration (TIMER). The association between the abundance of immune cells and 
the expression of (A) IL-6, (B) NLRP1, (C) NLRP2, (D) NLRP3, (E) NOD2 and (F) PLCG1 in HNSCC
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prognostic risk signature that was able to independently 
predict patient survival [41]. In a similar vein, we herein 
assessed the prognostic value of PRGs in HNSCC. We 
ultimately employed a LASSO Cox regression approach 
to construct a 6-PRG (IL-6, NLRP1, NLRP2, NLRP3, 
NOD2, and PLCG1) prognostic risk signature. Risk 
scores derived from this model were able to effectively 
stratify patients into low- and high-risk cohorts. High-
risk patients exhibited worse survival outcomes than 
did low-risk patients. These findings thus confirm the 
prognostic value of this novel PRG risk signature, high-
lighting a novel approach to predicting HNSCC patient 
outcomes.

Cell death plays a central role in diverse pathological 
processes [42], with pyroptosis functioning as an inflam-
matory type of caspase-mediated cell death that can 
modulate the immunogenic potential of specific cancers 
[43]. Such immunogenicity is of critical importance in 
the context of tumor immunotherapy owing to the ability 

of tumor cells to activate a variety of immunosuppres-
sive pathways within the local tumor microenvironment 
[44]. Pyroptosis can impact immune cell composition 
and associated immunological pathway activation to 
alter the processes governing tumorigenesis. Herein, we 
compared the immunological status of patients in our 
low- and high-risk groups, and assessed the relation-
ship between the levels of difference prognostic PRGs 
in HNSCC (IL-6, NLRP1, NLRP2, NLRP3, NOD2, and 
PLCG1) and immune cell infiltration. The results of these 
analyses suggest that this prognostic gene signature may 
have important implications for immunotherapy treat-
ment planning. NK cell infiltration was related to the 
activation of pyroptosis [45] and alternatively differen-
tiated macrophage (M2 macrophage) infiltration was 
associated with the decrease of inflammation and pyrop-
tosis [46]. Interestingly, In the present study, we noted 
that NK cell infiltration was increased and macrophage 
infiltration was decreased in high-risk patients from the 

Fig. 9  RT-qPCR analysis of six genes in prognostic model. Relative mRNA level of (A) IL-6, (B) NLRP1 (C) NLRP2 (D) NLRP3 (E) NOD2 and (F) PLCG1 
were assessed by RT-qPCR (Data was presented as mean ± SD)
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GSE65858 cohort, these results are also in line with the 
previous studies [28, 29], indicating the distinct role of 
macrophages and NK cells in cancer development, and 
suggesting the potential role of immune cell-mediated 
activation of pyroptosis in affecting HNSCC patients 
outcome.

Among the 6 genes in our prognostic model, NLRP3 
was positively correlated with immune infiltration in the 
TIMER database. The activation of NLRP3 has previ-
ously been reported in the context of metabolic changes, 

mitochondrial dysfunction, and the disassembly of the 
Golgi compartment. The NLRP3 inflammasome can also 
promote the caspase-1-dependent release of IL-1β and 
IL-18, which are inflammatory cytokines, in addition to 
activating downstream pyroptotic signaling mechanisms 
[47]. As the best-characterized inflammasome, NLRP3 
is known to be associated with the infiltration of various 
types of the immune cells and the induction of immune 
cell-mediated tumor suppression in gastric cancer, 
hepatic cancer, and lymphoma [48–50]. Interestingly, our 

Fig. 10  Lower expression of NLRP3 is associated with the poor prognosis of HNSCC patients. A The top 8 ranked proteins in topological degree 
in PPI network (Left panel), the venn diagram showed that NLRP3 was the only protein which existed in both PPI network and risk model (right 
panel). B NLRP3 expression in specimens of HNSCC patients. (n = 176). C OS curves for HNSCC patients with NLRP3-low and NLRP3-high expression 
(P = 0.019). D Kaplan–Meier analysis of DFS curves for HNSCC patients with NLRP3-low and NLRP3-high expression (P = 0.267)

Fig. 11  NLRP3 inhibits the invasion and migration of HNSCC cells. Small interferon RNAs (Si-RNAs) and pcDNA 3.1 plasmids were used to 
knockdown or overexpress (OE) the NLRP3 expression. A–C EdU assay was used to assess the proliferation of HNSCC cell lines. scale bar = 50 μm. 
D–G Transwell assays of HN6 and Cal27 cell lines were used to determine the invasion of HNSCC cells. H Wound healing assays of HN6 and Cal27 
cell lines (OE, overexpression; Data was presented as mean ± SD, *P < 0.05, **P < 0.01) scale bar = 100 μm

(See figure on next page.)
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Fig. 11  (See legend on previous page.)
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results are in line with those of previous studies, confirm-
ing the dual role of pyroptosis. Based on the Cox multi-
variate regression analysis of NLRP3 in our risk model, 
we posited that NLRP3 might act as a potential predic-
tor of HNSCC patient outcomes (HR = 0.68, P = 0.039). 
In line with these reports, the results of our PPI network 
and survival analyses suggested that NLRP3 may be a 
valuable predictor of prognosis among HNSCC patients. 
Relative to another similar study [26], we developed a dis-
tinct PRG-based prognostic model and highlighted the 
potential role of NLRP3 as a predictor of HNSCC patient 
outcomes, while finding that lower levels of NLRP3 
expression detected via IHC staining were associated 
with a worse prognosis. In vitro studies of invasion and 
migration activity also underscored the protective role of 
NLRP3 in the inhibition of HNSCC development. Over-
all, these data demonstrate the value of NLRP3 as a PRG 
that is independently associated with HNSCC patient 
survival and cancer development.

Conclusions
In conclusion, the results of this study suggest that many dif-
ferentially expressed PRGs were closely linked to the patho-
genesis of HNSCC. Risk scores derived from our 6-gene 
PRG model were independent predictors of HNSCC patient 
outcomes, and genes that were differentially expressed 
between low- and high-risk groups were associated with 
tumor immunity. RT-qPCR analyses of tumor tissues also 
supported the protective role of NLRP3 in the context of 
HNSCC development, while IHC analyses further high-
lighted the value of NLRP3 as a predictor of HNSCC patient 
prognosis, and the expression of NLRP3 was additionally 
shown to affect the invasion and migration of HNSCC cells. 
Overall, these data highlight a novel gene signature that can 
be leveraged to predict survival outcomes in individuals 
with HNSCC, offering a foundation for future analyses of 
the link between PRGs and this cancer type.
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