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Abstract 

Background:  The prevalence of lung adenocarcinoma (LUAD) has increased, thus novel biomarkers for its early 
diagnosis is becoming more important than ever. tRNA-derived small RNA (tsRNA) is a new class of non-coding RNA 
which has important regulatory roles in cancer biology. This study was designed to identify novel predictive and 
prognostic tsRNA biomarkers.

Methods:  tsRNAs were identified and performed differential expression analysis from 10 plasma samples (6 LUAD 
and 4 normal, SRP266333) and 96 tissue samples (48 LUAD and 48 normal, SRP133217). Then a tsRNA-mRNA regula-
tory network was constructed to find hub tsRNAs. Functional enrichment analysis was performed to infer the poten-
tial pathways associated with tsRNAs. Afterwards, a Support Vector Machine (SVM) algorithm was used to explore the 
potential biomarkers for diagnosing LUAD. Lastly, the function of tRF-21-RK9P4P9L0 was explored in A549 and H1299 
cell lines.

Results:  A significant difference of read distribution was observed between normal people and LUAD patients 
whether in plasma or tissue. A tsRNA-mRNA regulatory network consisting of 155 DEtsRNAs (differential expression 
tsRNAs) and 406 DEmRNAs (differential expression mRNAs) was established. Three tsRNAs (tRF-16-L85J3KE, tRF-21-
RK9P4P9L0 and tRF-16-PSQP4PE) were identified as hub genes with degree > 100. We found Co-DEmRNAs (intersec-
tion of DEtsRNAs target mRNAs and differentially expressed mRNAs in LUAD) were engaged in a number of cancer 
pathways. The AUC of the three hub tsRNAs’ expression for diagnosing LUAD reached 0.92. Furthermore, the qPCR 
validation of the three hub tsRNAs in 37 paired normal and LUAD tissues was consistent with the RNA-Seq results. In 
addition, tRF-21-RK9P4P9L0 was negatively associated with LUAD prognosis. Inhibition of tRF-21-RK9P4P9L0 expres-
sion reduced the proliferation, migration and invasion ability of A549 and H1299 cell lines.

Conclusion:  These findings will help us further understand the molecular mechanisms of LUAD and contribute to 
novel diagnostic biomarkers and therapeutic target discovery.
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Background
Lung cancer is responsible for a significant number of 
fatalities each year, with lung adenocarcinoma (LUAD) 
becoming the most common pathological type of 
lung cancer [1, 2]. The 5-year survival rate for LUAD 
is less than 20%, however early detection and therapy 
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can significantly increase it [3, 4]. Therefore, there is 
a growing need to identify molecular markers for the 
diagnosis of LUAD, which can aid in early detection 
and improve LUAD prognosis.

As an important component of the biological sample 
pool, blood samples are rich in biomolecules that can 
be used for disease diagnosis, stage identification and 
prognosis prediction. Compared with tissue samples, 
blood samples have the advantages of easier access, 
continuous sampling and higher patient acceptance. 
Therefore, analyzing biomarkers found in both tissue 
and blood samples can improve the accuracy and con-
venience of cancer detection.

Transfer RNA (tRNA)-derived small RNAs (tsRNAs) 
are a new class of small non-coding RNAs (sncRNAs) 
that have recently been found as a result of advances in 
high-throughput sequencing and bioinformatics analy-
sis. They are split into two types based on cleavage site 
and length: tRNA derived fragments (tRFs) and tRNA-
derived stress-induced RNAs (tiRNAs, also known as 
tRNA-half ) [5]. 5-tRF, 3-tRF, 1-tRF, and i-tRF are tRFs 
that come from mature or precursor tRNAs that are 
14–30 nucleotides (nt) in length. 5′-half and 3′-half 
tiRNAs, 29-50nt in length, are formed by explicit 
cleavage of mature tRNA anticodon loop under stress 
conditions [6–10]. Growing evidence suggests that 
tsRNAs can influence the emergence and progression 
of numerous diseases and cancers by participating in 
biological processes such as gene silencing, protein 
translation, etc. [5, 11–15]. For example, tRF3E, which 
is downregulated in human epidermal growth factor 
receptor 2 (HER2) positive breast cancer, can inter-
act with nucleolin to suppress p53 mRNA translation, 
thereby restraining the development of breast cancer 
[16]. In non-small cell lung cancer (NSCLC), tRF-Leu-
CAG is upregulated in tissues, cell lines, and sera, 
which results in facilitating NSCLC progression by 
promoting cell proliferation [17].

Despite accumulating evidence revealing that tsR-
NAs can be exploited as cancer diagnostic biomarkers 
and therapeutic targets [18–20], the roles of tsRNA 
in LUAD remain largely unknown. Due to advances 
in sequencing and bioinformatics, we are able to use 
public databases to investigate new LUAD biomarkers 
and therapeutic targets. Here, we used raw sequencing 
data from the Sequence Read Archive (SRA) and data 
from the Cancer Genome Atlas (TCGA) to analyze 
differentially expressed tsRNAs in LUAD, and build a 
tsRNA-mRNA network to find hub tsRNAs, and used 
machine learning methods to create predictive mod-
els to find tsRNAs that can be used as biomarkers for 
diagnosis and therapy targets in LUAD.

Materials and methods
Workflow
The workflow is visualized in Additional file  8: Fig. S1. 
All data are retrieved from public databases. The LUAD 
miRNA-Seq samples were searched and downloaded 
from NCBI SRA database in April 18, 2021 (keywords: 
’LUAD,’ ’Human species,’ and ’miRNA-Seq’). To mini-
mize confounding factors, only plasma samples were 
collected; exosomes, blood cells, and other samples were 
not included. Patients who had just undergone surgery, 
as well as those who were undergoing chemotherapy 
or radiotherapy, were excluded from the study. For fur-
ther analysis, 10 plasma samples (6 LUAD and 4 nor-
mal, SRP266333) and 96 tissue samples (48 LUAD and 
48 normal, SRP133217) were included for further [21, 
22]. These high-throughput sequencing data was down-
loaded by SRA Toolkit. Then, the raw reads were qual-
ity checked by FASTQC version 0.11.9. Next, TrimGalore 
version 0.6.6 was used to trim the small RNA sequencing 
adaptor and filter the reads using the command ‘-q 20—
phred33—stringency 3—length 14’. Finally, MINTmap 
v2.0 was used to collapse reads, reference alignment, and 
quantify expression with default parameters and human 
GRCh37 dataset [23]. The dataset includes genome 
and annotation files which were obtained from differ-
ent databases, such as tsRNAs that were gathered from 
the GtRNAdb database, miRNAs from miRbase, snoR-
NAs from snoRNABase, and genome, rRNA, ncRNA, 
and mRNA were retrieved from the Ensembl. We also 
used Mirge3.0 to perform read distribution analysis [24]. 
T-test was used to evaluate the difference in the propor-
tion of each type of reads between normal and LUAD 
samples with significance level defined as P < 0.05.

Construction of the tsRNAs‑mRNA regulatory network
Differentially expressed tsRNAs (DEtsRNAs) were 
identified utilizing DESeq2 software (version 1.26.0), 
with DEtsRNAs defined as |log twofold change|> 1 and 
adjusted P value < 0.05. Using intersecting studies, the 
consistent DEtsRNAs (Co-DEtsRNAs) between plasma 
and tissues were determined. The tRFTar website was 
used to retrieve the target mRNAs of Co-DEtsRNAs [25]. 
By using |log twofold change|> 1 and a q-value below 
0.05, the differentially expressed mRNAs (DEmRNAs) 
of TCGA LUAD were identified using the Gene Expres-
sion Profiling Interactive Analysis (GEPIA) website [26]. 
The overlapping mRNAs (Co-DEmRNAs) between tar-
get mRNAs and DEmRNAs were then identified using 
intersection analysis. The R package EnhancedVolcano 
version 3.13 was used to create volcano graphs. The 
UpSet plot was generated on http://​www.​ehbio.​com/​test/​
venn/#/. The tsRNAs-mRNA regulatory network was 
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constructed using Co-DEtsRNAs and Co-DEmRNAs via 
cystoscope version 3.8.2 and Gephi 0.9.2. The hub tsR-
NAs were distinguished by degree > 100.

Functional enrichment analysis and confirmation of hub 
genes
Metascape server was used to execute the Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Wikipathway, and Reactome Gene Sets enrich-
ment analysis [27]. The String database was used to inves-
tigate the protein–protein intersection (PPI) network 
of Co-DEmRNAs. The MCODE technique was used to 
separate the gene cluster (highly linked areas) [28]. The 
core network was created using the cytoHubba tool in 
Cytoscape and the Maximum Clique Centrality (MCC) 
algorithm [29].

Biomarker gene identification
The support vector machine (SVM) technique was used 
to categorize normal and LUAD samples based on the 
expression counts of the top three hub tsRNAs in the 
network. The model’s performance was assessed using 
cross-validation. The Python scikit-learn package was 
used to conduct all of the model training, testing, cross-
validation, and prediction.

Patients and ethical statement
LUAD tissues and normal lung tissues (at least 5  cm 
from the tumor edge) were acquired from the Depart-
ment of Thoracic Surgery, Xiangya Hospital of Central 
South University. The clinicopathological data was pro-
vided in Additional file 1: Table S1. The experiments were 
approved by the ethics committee of the Xiangya Hospi-
tal of Central South University.

RT‑qPCR
TRIzol reagent (Invitrogen, Carlsbad, CA) was used to 
extract RNA from tissues and cell lines. The TransScript 
One-step gDNA Removal and cDNA synthesis SuperMix 
kit (TransGen Biotech, Beijing, China) was used to gener-
ate first-strand cDNA. U6 was used as internal control for 
tsRNAs. The primers for U6, tRF-16-L85J3KE, tRF-21-
RK9P4P9L0 and tRF-16-PSQP4PE were purchased from 
Ribo (Guangzhou, China) using the stem-loop method. 
GAPDH was used as internal control for Notch1 expres-
sion level detection. The primers for GAPDH and Notch1 
were purchased from Tsingke (Beijing, China) using tail-
ing method. The relative levels of RNAs were calculated 
using the comparative CT (2 − ΔΔCT) method. Primers 
used in the study were listed in Additional file 2: Table S2.

Cell culture and RNA interference
Cell lines (Hcc827, A549, H1299, H1975, PC-9) used in 
the study were purchased from the Chinese Academy 
of Sciences Cell Bank (Shanghai, China). All cells were 
seeded in Roswell Park Memorial Institute (RPMI) 1640 
media (Gibco, Carlsbad, USA) with 10% fetal bovine 
serum (BI, Israel) and 2% penicillin–streptomycin 
(HyClone, Logan, UT, USA) at 37  °C in the presence of 
5% CO2. The cells were used within 10 passages. tRF-21-
RK9P4P9L0 inhibitors was purchased from Tsingke. The 
inhibitors were transfected using Lipofectamine® 3000 
(Invitrogen, CA, USA), following the guidelines of the 
manufacturer.

Cell Counting Kit‑8 and migration and invasion assays
Cell proliferation capacity was assessed using the cell 
counting kit-8 (Beyotime Biotechnology, Shanghai, 
China). 96-well plates were seeded with 3000 cells per 
well and recorded at 0, 24, 48, and 72 h.

Cell migration and invasion ability were assessed using 
transwell assays. In a 24-well plate, 40,000 cells cultured 
in serum-free medium were added to the upper chamber 
covered with (invasion) or without (migration) Matrigel 
(BD, USA). 1640 medium containing 10% FBS was added 
to the lower chambers. Twenty-four hours later, fixed 
with 4% paraformaldehyde and stained with 0.1% crystal 
violet, then 5 fields were randomly selected, numbered, 
and photographed under the microscope.

Statistical analysis
GraphPad Prism 8.0 and SPSS 22.0 were used to con-
duct all statistical analyses. The information is presented 
in the form of a mean and standard error of the mean 
(SEM). Statistical significance was defined as a P value of 
less than 0.05.

Results
Read distribution analysis of miRNA‑Seq in lung tissues 
and plasma from patients with LUAD
To investigate the tsRNA profiles in depth, we assessed 
at the read distribution of various types of small RNAs 
in plasma and tissues, including microRNA (miRNA), 
Ro-associated Y RNA (yRNA), tRNA, ribosomal RNA 
(rRNA), and non-coding RNA (ncRNA). There was a sig-
nificant variation in the distribution of small RNA com-
ponents between normal people and LUAD patients, as 
illustrated in Fig. 1A, B (10 tissue samples were randomly 
selected), whether in plasma or tissue. The reads pro-
portion of all tissues samples is provided in Additional 
file  8: Figure S2. In contrast to tissues (whether normal 
or LUAD tissues), where miRNA is always a substantial 
component, the amount of miRNA in plasma differed 
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significantly between normal and LUAD patients’ sam-
ples. In addition, plasma LUAD samples had a higher 
percentage of remaining reads than normal plasma, but 
normal and LUAD tissues had about the same percentage 
of remaining reads.

Furthermore, the amount of tRNA in plasma and 
tissues differed between normal people and LUAD 
patients. As shown in Fig.  1A, B, tRNA content var-
ied greatly: a small number of reads may be mapped 
to mature tRNA in normal plasma samples, whereas 
the proportion of tRNA in LUAD patients’ plasma is 
substantially greater than in normal samples. As we 
saw with plasma, the proportion of tRNA in normal 
tissues was substantially lower than that in tumor tis-
sues. Normal plasma, on the other hand, had substan-
tially lower levels of tRNA than normal tissues.

The expressed number of various tsRNA sub-types 
was shown in Fig.  1C, F. In LUAD patients, both 
plasma and tissue tsRNA had a higher expression 
range when compared to normal, which was consist-
ent with the read distribution results. The same pat-
tern of expression range among tsRNA sub-types was 
found in plasma and tissue samples. i-tRF had the 
greatest expressed numbers, followed by 3’tRF, 5’tRF, 
5’-half, and 3’-half. Figure 1D, E, G, H showed the per-
centages of sub-types in greater detail. However, no 
differences in tsRNA sub-type distribution were found 
between normal people and LUAD patients, whether 
in plasma or tissues, or between plasma and tissues.

These findings demonstrated that the distribution 
of small RNAs, including tRNAs, differed significantly 
between normal and LUAD, plasma and tissues, but 
not tRNA sub-type.

Identification of differentially expressed tsRNAs 
in tissues and plasma from normal and LUAD patients
The expression levels of tsRNAs in normal plasma/tis-
sues and LUAD plasma/tissues were determined using 
the pipeline we built. Only genes with an expression 
level larger than 10 counts in the total number of sam-
ples were maintained. Finally, 2798 and 13,226 tsRNA 
were found in plasma and tissue, respectively. Dif-
ferentially expressed tsRNAs (DEtsRNAs) in LUAD 
plasma and tissues were obtained using the criteria 
of fold change > 2 and P value < 0.05. The differential 

expression analysis result had been shown using a vol-
cano graphic (Fig. 2A in plasma, Fig. 2B in tissue). We 
discovered 523 DEtsRNAs in plasma, 391 of which 
were up-regulated and 132 of which were down-reg-
ulated. There were 2292 DEtsRNAs identified in tis-
sues, with 1477 upregulated and 815 downregulated. 
These DEtsRNAs were listed in Additional file  3: 
Table S3.

These findings implied that LUAD patients’ plasma 
and tissues contain a substantial number of differently 
expressed tsRNAs.

Construction of the tsRNA‑mRNA regulatory network
The UpSet diagram of up and down regulated tsRNA 
in plasma and tissue is shown in Fig.  2C. Only 155 
consistent differential expression tsRNA (Co-DEtsR-
NAs) were detected by intersection analysis, 135 of 
which were up-regulated and 20 of which were down-
regulated, and these were kept for further analysis. In 
Additional file 4: Table S4, the sequence, fold change, 
and sub-type of Co-DEtsRNAs in plasma and tis-
sue were listed. To get reliable tsRNA targets mRNA, 
tRFTar was used in which the target genes were veri-
fied by Argonaute CLIP-Seq datasets and CLASH-Seq 
datasets. In total, 2220 mRNA targets were identi-
fied. We further analyzed the differentially expressed 
mRNAs in LUAD from TCGA and 4,238 DEmRNAs 
were identified (P < 0.05 and | log twofold change|> 1) 
(Fig.  2D). Subsequently, we determined 406 Co-
DEmRNAs by intersecting the target mRNAs and 
DEmRNAs.

We used 155 Co-DEtsRNAs and 406 Co-DEmR-
NAs to extract sub-network of LUAD tsRNA-mRNA 
network in tRFTar database. 77 tsRNAs have no tar-
get mRNA. Finally, a regulatory network comprised 
of 78 Co-DEtsRNAs, 406 Co-DEmRANs, and 1305 
targeted connections was created. In Fig.  3A, the 
network is depicted. Nodes were colored differently 
to distinguish different forms of tsRNA and mRNA, 
and edges were colored differently to designate dif-
ferent sorts of action modes (binding sites in the 
3′UTR [untranslated region], 5′UTR, or CDS [Cod-
ing DNA Sequence]). Larger node represented more 
neighbors. We found three hub tsRNAs in our net-
work using the degree > 100 as a hub gene in our 

Fig. 1  Read distribution of small RNAs and tsRNA sub-type in plasma and tissue of normal people and LUAD patients. A Small RNA distribution in 
plasma of normal people and LUAD patients, the right panel displayed the P value of the difference in the proportion of each type of reads between 
normal and LUAD samples; B Small RNA distribution in tissues of normal people and LUAD patients, the right panel displayed the P value of the 
difference in the proportion of each type of reads between normal and LUAD samples; C Expressed tsRNAs sub-type numbers in plasma of normal 
people and LUAD patients using violin illustration; percentage of tsRNAs sub-type numbers in plasma of normal people (D) and LUAD patients (E) 
using pie chart; F expressed tsRNAs sub-type numbers in tissues of normal people and LUAD patients using violin illustration; percentage of tsRNAs 
sub-type numbers in tissues of normal people (G) and LUAD patients (H) using pie chart

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Fig. 2  Differential expressed tsRNAs and mRNAs in LUAD. Differential expressed tsRNAs in plasma (A, SRP266333) and tissue (B, SRP133217); C 
intersection analysis of DEtsRNAs in plasma and tissues; D differential expressed mRNAs in LUAD using TCGA dataset. The grey dots represent genes 
which under significate differential expression cutoff |log2FC|> 1 and P-value < 0.05, the red plots displayed the up-regulated tsRNAs or mRNAs, the 
blue plots displayed the down-regulated tsRNAs or mRNAs. LUAD, lung adenocarcinoma; DE, differential expression; Co-DE, common differentially 
expressed
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analysis. The most closely related tsRNA to target 
mRNAs was tRF-16-L85J3KE (degree = 269), fol-
lowed by tsRNA tRF-21-RK9P4P9L0 (degree = 129), 
and tsRNA tRF-16-PSQP4PE (degree = 129). The 
majority of tsRNA targets were 6–10 mRNAs 
(Fig. 3B). Most mRNAs, on the other hand, only had 

one tsRNA target (Fig.  3C). tsRNAs, obviously, had 
more targets than mRNAs.

These results demonstrated that constructing 
tsRNA-mRNA regulatory networks can benefit in 
the discovery of essential tsRNAs in LUAD.

Fig. 3  The tsRNA-mRNA regulatory network. A Visualized regulatory network of tsRNA-mRNA, nodes were colored to distinguish sub-types of 
tsRNA and mRNA, edges were colored to identify different action modes, the larger the node, the higher degree; B statistical analysis of the number 
of mRNAs which tsRNA targeted; C statistical analysis of the number of tsRNA targets among mRNA
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Fig. 4  Functional enrichment of Co-DEmRNAs. A Graph of the top ten results from the GO analysis in terms of BP; B graph of the top ten 
enrichment pathways in KEGG; C graph of the top ten enrichment pathways in Recotome; D graph of the top ten enrichment pathways in 
Wikipathways; E PPI network of the Co-DEmRNAs, different clusters were marked with colors; F exhibition of 14 closely connected clusters. Co-DE, 
common differentially expressed; GO, Gene Ontology; BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI: protein–
protein interaction
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Enrichment analysis of targeted mRNAs
To investigate the probable roles of DEtsRNAs, we 
used GO, KEGG, Reactome, and Wikipathway enrich-
ment analyses on these 406 Co-DEmRNAs. Figure  4A 
showed the top ten results from the GO biological pro-
cesses. The majority of the findings were connected to 
the occurrence and progression of malignancies, with 
the majority of the findings focusing on cell adhesion. 
Cancer metastasis is strongly linked to cell adhesion. 
This might indicate a solitary metastasis that can be 
detected by changes in tsRNA expression. Furthermore, 
the KEGG pathway, Reactome, and Wikipathway enrich-
ment analyses revealed that the cell cycle was implicated. 
Several cancer-related pathways, such as the p53 signal-
ing pathway, the TGF-beta signaling pathway, and the 
VEGFA-VEGFR2 signaling pathway, were also included 
(Fig. 4B–D). Following a PPI network analysis, 349 nodes 
from the 406 Co-DEmRNAs were shown to be highly 
associated (1672 edges) (Fig.  4E). It can be classified 
into 14 clusters using the MCODE algorithm (Fig.  4F). 
Some of the clusters participated in cancer. For instance, 
MCODE1, which is involved in the TGF-beta signaling 

pathway, and MCODE3, which is involved in cell cycle 
and nucleotide metabolism (Additional file 5: Table S5).

These results indicated that functional enrichment 
analysis of tsRNA target genes can help elucidate the 
mechanism of tsRNAs in LUAD and identify strategies 
for future research.

Biomarker identification of tsRNAs in LUAD using machine 
learning
We employed a fourfold cross-validation strategy to 
uncover candidate tsRNAs that can predict LUAD and 
validate our model. We developed a tsRNA expression 
level basis model for LUAD prediction using the SVM 
approach. The findings revealed that tRF-16-L85J3KE 
had a high likelihood of correctly classifying normal and 
LUAD plasma samples (Fig. 5A). Its AUC score reached 
0.99, which was significantly higher than that of tRF-21-
RK9P4P9L0 (0.81) and tRF-16-PSQP4PE (0.56). How-
ever, all single tsRNA in tissue can’t distinguish between 
normal and LUAD samples well (Fig.  5B). Nonetheless, 
the model accuracy was significantly better when all 
three tsRNAs were coupled than when only one was used 

Fig. 5  Receiver operating characteristic curves for the hub tsRNAs in plasma and tissue to distinguish LUAD patients from normal people. The AUC 
values obtained by using tRF-16-L85J3KE, tRF-21-RK9P4P9L0 and tRF-16-PSQP4PE individually in plasma (A) and tissue (B); The AUC values obtained 
in combination of tRF-16-L85J3KE, tRF-21-RK9P4P9L0 and tRF-16-PSQP4PE in plasma (C) and tissue (D). LUAD: lung adenocarcinoma; AUC: area 
under the receiver operating characteristic curve
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(Fig.  5C, D). The AUC value in the tissue increased by 
0.19 to 0.92.

These findings indicated that tsRNA can be utilized as a 
diagnostic biomarker for LUAD, but that a single tsRNA 
was less efficient than a combination of multiple tsRNAs.

Function analysis of tRF‑21‑RK9P4P9L0
We subsequently investigated the expression character-
istics of the three hub tsRNAs. i-tRF tRF-16-L85J3KE 
was down-regulated (log2 fold change = − 4.79, P 

value = 0.0063) in plasma, whereas 5′-tRF tRF-21-
RK9P4P9L0 (log2 fold change = 2.94, P value = 0.0027) 
and 5′-tRF tRF-16-PSQP4PE (log2 fold change = 4.14, 
P value = 0.0075) were up-regulated (Fig.  6A). The dif-
ferential expression pattern was the same in tissue, 
although the fold change values were smaller (Fig.  6B). 
Using the samples we gathered, we then validated its 
expression level in 37 paired LUAD tissues using RT-
qPCR. As shown in Fig.  6C–E, the expression level of 
tRF-16-L85J3KE was decreased in tumor tissues while 

Fig. 6  Potential tsRNAs as biomarkers. Dot plot displayed tRF-16-L85J3KE, tRF-21-RK9P4P9L0 and tRF-16-PSQP4PE expression level in plasma (A) 
and tissues (B); expression levels of tRF-16-L85J3KE (C), tRF-21-RK9P4P9L0 (D) and tRF-16-PSQP4PE (E) in LUAD tissues and paired normal tissues; F 
survival analysis of tRF-21-RK9P4P9L0 in LUAD; G structure and sequence of tRF-21-RK9P4P9L0
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tRF-21-RK9P4P9L0 and tRF-16-PSQP4PE was highly 
elevated in tumor tissues compared to normal tissues, 
which was consistent with results from public data.

Only tRF-21-RKP4P9L0 was discovered to have a sig-
nificant link with prognosis in LUAD (Fig. 6F, data used 
for analyzing the prognosis of tRF-21-RKP4P9L0 was 
provided in Additional file 6: Table S6), hence the proper-
ties of tRF-21-RKP4P9L0 were investigated further.

With a length of 21nt (GGG​GGT​GTA​GCT​CAG​TGG​
TAG), tRF-21-RK9P4P9L0 was cleaved at the 5′end of 
tRNA. Figure 6G depicts the structure of its tRNA host.

To explore the underlying mechanism of tRF-21-
RK9P4P9L0, we built a target mRNA network and a PPI 
network to investigate its possible function. Figure  7A 

showed that there were 114 tsRNA-mRNA interactions 
and 209 PPI interactions, with the CDS region of the tar-
get mRNAs (74 CDS, 42 3′-UTR, and 5 5′-UTR) serving 
as the primary binding sites (Additional file 7: Table S7). 
We performed an enrichment analysis on the genes in 
the network, a distinct enriched term is presented by a 
different color node, Cytoscape MCC analysis was used 
to figure out what the core module in this network was 
(Fig. 7B). Figure 7C showed the extraction of a strongly 
linked sub-network. The network’s hub was discovered to 
be Notch1.

Notch1 has been investigated to have roles in can-
cer cell proliferation, migration and invasion, we then 
explored these functional impacts of tRF-21-RK9P4P9L0 

Fig. 7  Functional analysis of tRF-21-RK9P4P9L0 using bioinformatics methods. A Merged network of tRF-21-RK9P4P9L0 and its target mRNAs, grey 
edge: tsRNA-mRNA interaction, red edge: protein–protein interaction; B tRF-21-RK9P4P9L0’s target gene in PPI network, individual clusters are 
differently colored; C the core sub-network of merged network
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Fig. 8  Functional analysis of tRF-21-RK9P4P9L0 in LUAD cell lines. A tRF-21-RK9P4P9L0 expression level in A549-NC and A549-tRF-21-RK9P4P9L0; 
B Notch1 expression level in A549-NC and A549-tRF-21-RK9P4P9L0; C proliferation rates of A549-NC and A549 tRF-21-RK9P4P9L0; D migration 
ability of A549-NC and A549 tRF-21-RK9P4P9L0; E invasion ability of A549-NC and A549 tRF-21-RK9P4P9L0; F tRF-21-RK9P4P9L0 expression 
level in H1299-NC and H1299-tRF-21-RK9P4P9L0; G Notch1 expression level in H1299-NC and H1299-tRF-21-RK9P4P9L0; H proliferation rates of 
H1299-NC and H1299 tRF-21-RK9P4P9L0; I migration ability of H1299-NC and H1299 tRF-21-RK9P4P9L0; J invasion ability of H1299-NC and H1299 
tRF-21-RK9P4P9L0
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in LUAD cell lines. After detecting the tRF-21-
RK9P4P9L0 expression in different LUAD cell lines, 
we selected A549 and H1299 for subsequent functional 
experiments due to their relative higher expression level 
(Additional file  8: Figure S3). The results demonstrated 
that tRF-21-RK9P4P9L0 inhibition increased Notch 1 
expression level (Fig.  8A, B) and significantly reduced 
the proliferation (Fig. 8C), migration (Fig. 8D) and inva-
sion (Fig. 8E) ability of A549 cells. The same impacts were 
observed in H1299 cell line (Fig. 8F–J).

These findings demonstrated that bioinformatics meth-
ods can be used to investigate the function of specific 
genes.

Discussion
LUAD is a disease with a high mortality rate, and the 
molecular mechanism underlying its occurrence and 
progression has not been fully revealed. Previous stud-
ies of miRNA-Seq were mainly used to analyze miRNA 
expression profiles. Other forms of short RNAs, includ-
ing tRNA, yRNA, and rRNA, may now be studied more 
thoroughly because of advances in bioinformatics. Sev-
eral studies have disclosed tsRNAs that have been linked 
to the development of cancer, including lung cancer. In 
this study, we developed a new framework for the func-
tional study of tsRNA in LUAD. The read distribution 
statistics showed that mature tRNA had a considerable 
proportion, and many of them were tRNA fragments. 
Read distribution result also showed that tsRNA content 
was increased in LUAD plasma and tissues compared to 
normal, but there were no variations in sub-type tsRNAs.

A tsRNA-mRNA regulatory network consisting of 78 
Co-DEtsRNAs, 406 Co-DEmRANs, and 1305 targeted 
connections was established. Functional enrichment 
analysis of Co-DEmRNAs revealed that cancer related 
pathways were involved. Three hub tsRNAs (tRF-16-
L85J3KE, tRF-16-PSQP4PE, and tRF-21-RK9P4P9L0) 
were identified by degree > 100. These three tsRNAs pre-
diction models for LUAD were developed by a machine 
learning approach. The results showed that the accuracy 
of a single tsRNA expression used to distinguish nor-
mal from LUAD samples in both plasma and tissue was 
very low, so a machine learning model based on multiple 
expression characteristics was further built for detection. 
Through the model established by SVM, combining all 
the three hub tsRNAs can predict LUAD with an AUC 
0.99 in plasma and 0.92 in tissues.

Among the three tsRNAs, only tRF-21-RKP4P9L0 was 
linked to the prognosis of LUAD. We built a tRF-21-
RKP4P9L0 network comprising target genes, and Notch1 
was at the core of the network. Considering Notch1 can 
contribute in cancer development [30], we validated that 

tRF-21-RKP4P9L0 can modify LUAD by influencing pro-
liferation, migration and invasion.

Furthermore, we noticed that the fold change values 
of tsRNAs in plasma was higher than in tissue. 153 out 
of 155 DEtsRNAs displayed larger fold change values in 
plasma than in tissues. This could be due to the fact that 
tsRNA expression levels in plasma were substantially 
lower than in tissue. Plasma is easier to collect than tissue 
when it comes to diagnosing cancers. The most prevalent 
approach for determining RNA expression levels is RT-
qPCR. High fold change values can improve the sensitiv-
ity of results, but lower expression levels can compromise 
the precision of the results. To ensure the accuracy of the 
diagnostic results, the critical value of tsRNAs expression 
level that can be identified in plasma must be determined.

However, our study has several drawbacks. To begin with, 
because the research on tsRNA is still in its early stages, the 
IDs used throughout databases are variable, as are the com-
parison factors, which makes tsRNA quantification more 
challenging. Furthermore, since the public data is derived 
from a variety of technological platforms, it may impact on 
the outcomes. Finally, future research on the mechanism of 
tsRNA should be performed to study them in-depth.

Conclusions
In conclusion, we created a tsRNAs-mRNA network 
and discovered three hub tsRNAs. The fundamental 
mechanism of LUAD was investigated using functional 
enrichment analysis of target genes. Three tsRNAs 
were revealed for the diagnosis of LUAD using machine 
learning approach. Combining bioinformatics and 
experimental methods, we explored the function of tRF-
21-RKP4P9L0. Our research identifies new potential 
diagnostic and therapeutic targets for LUAD, as well as 
new insights into the LUAD’s pathogenesis.
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