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Abstract 

Background:  Prognostic assessment is imperative for clinical management of patients with hepatocellular carci-
noma (HCC). Most reported prognostic signatures are based on risk scores summarized from quantitative expression 
level of candidate genes, which are vulnerable against experimental batch effects and impractical for clinical applica-
tion. We aimed to develop a robust qualitative signature to assess individual survival risk for HCC patients.

Methods:  Long non-coding RNA (lncRNA) pairs correlated with overall survival (OS) were identified and an optimal 
combination of lncRNA pairs based on the majority voting rule was selected as a classification signature to predict 
the overall survival risk in the cancer genome atlas (TCGA). Then, the signature was further validated in two external 
datasets. Besides, biomolecular characteristics, immune infiltration status, and chemotherapeutics efficacy of different 
risk groups were further compared. Finally, we performed key lncRNA screening and validated it in vitro.

Results:  A signature consisting of 50 lncRNA pairs (50-LPS) was identified in TCGA and successfully validated in 
external datasets. Patients in the high-risk group, when at least 25 of the 50-LPS voted for high risk, had significantly 
worse OS than the low-risk group. Multivariate Cox, receiver operating characteristic (ROC) curve and decision curve 
analyses (DCA) demonstrated that the 50-LPS was an independent prognostic factor and more powerful than other 
available clinical factors in OS prediction. Comparison analyses indicated that different risk groups had distinct biomo-
lecular characteristics, immune infiltration status, and chemotherapeutics efficacy. TDRKH-AS1 was confirmed as a key 
lncRNA and associated with cell growth of HCC.

Conclusions:  The 50-LPS could not only predict the prognosis of HCC patients robustly and individually, but also pro-
vide theoretical basis for therapy. Besides, TDRKH-AS1 was identified as a key lncRNA in the proliferation of HCC. The 
50-LPS might guide personalized therapy for HCC patients in clinical practice.
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Background
Liver cancer is one of the most lethal cancers worldwide 
and approximately 75–85% of the cases are diagnosed as 
hepatocellular carcinoma (HCC) pathologically [1]. For 
HCC patients with proper preserved liver function, cura-
tive surgical resection still remains the major treatment 
[2]. However, the prognosis of HCC patients varied tre-
mendously after surgery due to tumor heterogeneity [2, 
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3], highlighting the need for personalized managements. 
Therefore, it is of critical importance to predict the prog-
nosis of HCC patients after surgery for guiding clinical 
therapy and patient management.

Currently used clinical features and biomarkers, such 
as TNM staging system, BCLC staging system, and serum 
alpha-fetoprotein (AFP) level, were insufficient in provid-
ing accurate prognostic evaluation for HCC patients in 
clinical practice [4, 5]. For example, the most widely used 
serum AFP level was reported to be nearly half-negative 
in early and small size HCC patients [6], which crippled 
the prognostic ability of serum AFP. Moreover, the TNM 
and BCLC staging system were not widely used for the 
differences in etiology and genetic background of HCC 
patients [4].

Although many prognostic signatures based on scoring 
from quantitative gene expression have been developed 
for predicting prognosis of HCC patients recently [7–9], 
most of them require pre-collection of samples for data 
normalization and have inconsistent cut-off value in dif-
ferent cohorts, which are impractical for clinical applica-
tion. Conversely, the within-sample relative expression 
orderings (REOs) of gene pairs, which is an individual 
qualitative transcriptional trait, has been demonstrated 
to be robust against batch effects and data normalization 
[10, 11]. Based on the REOs, some qualitative signatures 
were created and achieved satisfactory performance in 
prognosis prediction for several cancers [12–15]. How-
ever, most reported qualitative prognostic signatures 
were based on protein-coding genes and few of them 
focused on HCC. Considering the important role of long 
noncoding RNA (lncRNA) in the carcinogenesis of HCC 
[16], it is worthy to find an individualized lncRNA prog-
nostic signature for HCC patients after surgery.

In this study, a novel REOs-based prognostic signature 
consisting of 50 lncRNA pairs (50-LPS) was identified 
in a training dataset, and the signature was successfully 
validated in two external datasets. We further revealed 
the different biomolecular characteristics, immune infil-
tration status, and chemotherapeutics efficacy between 
the two prognostic groups. Moreover, among the 55 
lncRNAs included in the 50-LPS, TDRKH-AS1 was con-
firmed as a key lncRNA and associated with cell growth 
of HCC. In clinical practice, these results might be useful 
for aiding personalized therapy and management of HCC 
patients.

Methods
Data source and preprocessing
All the cohorts of HCC samples, as described in Addi-
tional file  1: Table  S1, were downloaded from public 
resources. Gene expression profile and somatic mutation 
data of the TCGA-LIHC cohort were obtained by using 

R package TCGAbiolinks [17] and TCGAmutations [18] 
respectively. Clinical information of the TCGA-LIHC 
cohort was downloaded from UCSC Xeno (https://​xena.​
ucsc.​edu/​public) on 2019-11-10. Transcriptome data 
of CHCC cohort was accessed from NODE (https://​
www.​biosi​no.​org/​node) and the corresponding clinical 
information was acquired from a previous study [19]. 
Transcriptome and clinical information of LIRI sam-
ples, included in the PCAWG project, were downloaded 
from ICGC (https://​dcc.​icgc.​org/​relea​ses/​PCAWG) [20]. 
GSE77509 and GSE104580 were downloaded from the 
Gene Expression Omnibus (GEO) database. After map-
ping the ensemble gene IDs to gene names according to 
the annotation files (hg38.99) downloaded from Ensem-
ble (http://​asia.​ensem​bl.​org), all the gene expression val-
ues were transformed into transcripts per million (TPM) 
values. LncRNAs were kept for further analysis, whose 
expression value was more than zero in more than 90% of 
samples both in TCGA-LIHC and CHCC cohorts.

Survival analysis
The overall survival (OS) interval was defined as the time 
from surgery to death or the last follow-up. Kaplan–
Meier survival curves and log-rank test were used to 
evaluate the difference of OS between the high-risk 
and low-risk subgroups. The univariate Cox regression 
model was utilized to identify prognostic lncRNA pairs 
and clinical factors for HCC patients. The multivariate 
Cox regression model was used to evaluate prognos-
tic performance of the signature after adjusting for age, 
gender, serum AFP levels, liver cirrhosis, tumor vascular 
invasion (VI), and TNM stage. Hazard ratios (HRs) and 
95% confidence intervals (CIs) were calculated from the 
Cox proportional- hazards model. The predictive ability 
of the signature was evaluated by the concordance index 
(C-index) value and the AUC value of the ROC curve 
[21]. Decision curve analysis (DCA) was used to assess 
the utility of the signature for decision making [22].

Identification of the signature
First, lncRNAs with significant prognostic value were 
identified by using univariate Cox regression analyses in 
the training dataset (TCGA-LIHC). Then, lncRNA pairs 
were constructed via permutation and combination by R 
software. For a given lncRNA pair, for example, lncRNA 
1 and lncRNA 2 with expression levels of E1 and E2, its 
REO pattern (E1 > E2 or E1 < E2) can stratify all samples 
into two groups. If the two groups have significantly 
different OS, the lncRNA pair is considered as a candi-
date prognostic lncRNA pair. Next, a forward selection 
procedure was adopted to seek an optimal subset of the 
lncRNA pairs, which was based on the pre-defined clas-
sification rule: a patient is classified into the high-risk 
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group if no less than half of the lncRNA pairs of this 
patient vote for high risk; otherwise, the low-risk group. 
In brief, the candidate lncRNA pair with the highest 
C-index was selected as the seed signature, and the other 
prognosis‐related lncRNA pairs, ranked in descending 
C-index order, were added into the signature one by one. 
Every time an additional lncRNA pair added in the signa-
ture, a new C-index value was calculated to check if the 
predictive ability of the signature was better than before. 
Finally, the optimal REO lncRNA signature was identified 
when an addition of a new lncRNA pair did not improve 
the C-index of the signature in the training dataset.

Analyses of transcriptional and genomic data
The Wilcoxon rank-sum test was performed to iden-
tify differentially expressed genes between the low- and 
high-risk subgroups. Gene Set Enrichment Analysis 
(GSEA) was conducted by using clusterProfiler R pack-
age [23] to explore the difference of biological charac-
teristics between the two groups. Genes with different 
mutation frequencies between the two prognostic groups 
were visualized by complexheatmap R package [24].

Estimation of immune infiltration
CIBERSORT algorithm [25] was adopted to investigate 
the immune-cell infiltration. The differences of immune 
infiltrating cell scores were analyzed by Wilcoxon rank-
sum test.

Characterization of HCC subclasses
To analyze the correlation between the two prognostic 
subgroups and previously published HCC molecular sub-
types, MS.liverK algorithm [26] was used to character-
ize the six different molecular subtypes in TCGA-LIHC 
samples. Chi-square test was used to detect correlations 
between the two subgroups and HCC subclasses.

Prediction of the benefit of each risk group 
from chemotherapy
Our previous data (GSE104580) consisting of HCC 
patients treated with transarterial chemoembolization 
(TACE) was used to indirectly predict the chemotherapy 
efficacy of the two risk subgroups based on subclass map-
ping analysis [27]. In addition, to test whether the sub-
group could benefit from other chemotherapeutic drugs, 
we downloaded the predicted half maximal inhibitory 
concentration (IC50) data of TCGA-LIHC samples from 
a previous study [28]. Wilcoxon rank-sum test was used 
to detect the difference of predicted IC50 value between 
the two groups.

Hub lncRNAs screening and validation in vitro
Hub lncRNAs were defined as the differentially 
expressed lncRNAs with log2(fold change) > 1 and 
FDR < 0.05 (Wilcoxon test) between tumor and nor-
mal  liver tissues, as well as associated with OS in 
TCGA-LIHC cohort and CHCC cohort. To validate the 
expression pattern between tumor and normal liver tis-
sues by quantitative real‑time PCR, we collected five 
paired HCC and normal liver tissues in our center. 
This research was approved by the Ethics Committee 
of Sun Yat-Sen University Cancer Center, and written 
informed consent was obtained from all patients. In 
addition, we conducted in vitro assays to investigate the 
biological function of the key lncRNA.

RNA extraction, reverse transcription, and quantitative 
real‑time PCR
According to the manufacturer’s instructions, total 
RNA was isolated by using an RNA Extraction Kit (ESs-
cience Biotech, Shanghai, China). For reverse transcrip-
tion, 2  μg of total RNA was used to synthesize cDNA 
with a cDNA Synthesis Kit (TOYOBO, Osaka, Japan). 
Then cDNA was subjected to quantitative real‑time 
PCR amplification using SYBR Green (TOYOBO, 
Osaka, Japan) with a Bio-Rad PCR System. β-actin was 
used as an internal control. The sequence of primers 
used in this study was provided in Additional file  1: 
Table S2.

Cell lines and culture conditions
HCC cell lines, MHCC97H and Huh7, were obtained 
from Shanghai Municipal Liver Cancer Medical Center 
and the National Collection of Authenticated Cell Cul-
tures, respectively. The cell lines were incubated in 
Dulbecco’s modified Eagle’s medium (Gibco, Carlsbad, 
USA) with 10% foetal bovine serum (Gibco, Carlsbad, 
USA), with 5% CO2 at 37 °C.

Plasmid construction and transfection
The pSLenti vector containing short hairpin RNAs 
(shRNA) targeting TDRKH-AS1 was obtained from 
OBiO Technology (OBiO, Shanghai, China). Accord-
ing to the instructions, plasmid was transfected into 
MHCC97H and Huh7 cell line using a Lenti-Pac™ HIV 
Expression Packaging Kit (GeneCopoeia, Rockville, 
USA). The sequence of the shRNA was provided in 
Additional file 1: Table S2.

In vitro cell growth assays and apoptosis assays
For CCK8 assays, the transfected cells were plated in 
96-well plates at a density of 2000 cells per well. Opti-
cal Density (OD) value at 450 nm was tested on day 0, 
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1, 2, 3, and 4 with a CCK8 assay kit (Dojindo, Kuma-
moto, Japan). For Cell colony formation assays, the 
transfected cells were plated in 6-well plates at a den-
sity of 1000 cells per well and harvested on day 14. 
Crystal violet staining solution (Beyotime, Shanghai, 
China) was used to stain the cell colony. The total area 
of the colony was detected by Image J software (NIH 
Image, Bethesda, MD). According to the manufactur-
ers’ instructions, apoptosis assays were performed by 
PI/Annexin V detection kits (ESscience Biotech, Shang-
hai, China) and analyzed by flow cytometry (Beckman 
CytoFLEX, USA).

Western blotting
Cell extracts were harvested and were resolved by SDS-
PAGE and transferred to a polyvinylidene difluoride 
membrane. After blocking, the membrane was incubated 
with primary antibodies including Caspase3 (1:1000, 
Cell Signaling Technology, USA), phospho-Akt  (Ser473)
(1:1000,  Cell Signaling Technology,  USA),  GAPDH 
(1:1000, Cell Signaling Technology, USA) and the sec-
ondary antibody HRP-conjugated goat anti-rabbit IgG 
(1:3000; Cell Signaling Technology, USA). Signals were 
detected by an ECL kit (Bio-Rad, USA).

Statistical analysis
All the computational and statistical analyses were per-
formed using R 4.0.1 or GraphPad Prism 8.0.1 software. 
P-value < 0.05 was regarded as statistically significant. 
The false discovery rate (FDR) was calculated using the 
Benjamini–Hochberg method [29] when multiple testing 
occurred.

Results
Development of the REOs‑based prognostic signature
The main research steps of this study are summarized in 
Fig.  1. TCGA-LIHC cohort with 365 HCC samples was 
used as the training dataset. By setting a cut-off less than 
0.05 of FDR in the univariate Cox proportional hazards 
regression model, we identified 119 OS-associated lncR-
NAs. For all the lncRNA pairs consisting of every two of 
the 119 pre-selected lncRNAs, 1333 prognosis‐associated 
lncRNA pairs were chosen (FDR < 0.2) and then ranked 
in descending order according to their C-index values. 
According to the majority voting rule (see “Methods” 
section), a final set of 50 lncRNA pairs (Table 1) attained 
the highest C-index value of 0.75 was identified through 
the forward selection procedure (see “Methods” section). 

Using the 50 lncRNA pairs signature, named as 50-LPS, 
in the training cohort, 135 samples were stratified into 
high-risk group, who got no less than 25 lncRNA pairs 
voting for high risk, and other samples were stratified 
into low-risk group. KM plot showed that samples in 

the high-risk group had an obviously worse overall sur-
vival than those in the low-risk group (HR = 5.92, 95% 
CI 4.09–8.56, p = 3.56 × 10–26, Fig.  2A). ROC curve 
indicated that the 50-LPS had a robust predictive abil-
ity with an AUC value of 0.83, 0.77, 0.74 in the 1st year, 
3rd year and 5th year (see Fig. 2D), respectively. What’s 
more, the 50-LPS maintained a significant prognos-
tic power after adjusting for age, gender, liver cirrhosis, 
serum AFP level, tumor vascular invasion (VI) and TNM 
stage (Fig.  2E) and presented a better utility than TNM 
stage and VI in DCA (Fig. 2F). Peculiarly, the 50-LPS can 
successfully stratify the early-stage (stage I + II) samples 
into high- and low-risk group with significant OS dif-
ference (HR = 6.45, 95% CI 3.90–10.66, p = 1.47 × 10–16, 
Fig. 2B) as well as the late-stage (stage III + IV) samples 
(HR = 5.1, 95% CI 2.54–10.24, p = 5.21 × 10–7, Fig. 2C).

Validation of the signature
Two external HCC cohorts were used to test the pre-
dictive ability and utility of the 50-LPS. A number of 
159 HBV associated HCC samples in CHCC cohort 
were firstly subjected to risk assessment by using the 
50-LPS. 69 and 90 samples were classified into the 

Fig. 1  Overview of the study workflow



Page 5 of 15Bu et al. Cancer Cell International           (2022) 22:95 	

high- and low-risk groups, respectively. The high-risk 
group had a significantly shorter OS when compared 
to the low-risk group (HR = 3.22, 95% CI 1.85–5.61, 
p = 1.32 × 10–5, Fig. 3A) with an AUC value of 0.66 and 
0.64 at 1st year and 3rd year respectively (Fig. 3G). The 
42 samples from LIRI cohort were used as the second 
validation set. 13 and 29 samples were predicted to be 
in the high- and low-risk groups with extremely differ-
ent OS (HR = 6.87, 95% CI 2.03–23.2, p = 3.57 × 10–4, 
Fig. 3D) with an AUC value of 0.87 and 0.77 at 1st year 
and 3rd year respectively (Fig.  3J). In addition, the 
50-LPS also succeeded in stratifying the early-stage or 
late-stage HCC patients from CHCC cohort (Fig.  3B, 
C) and LIRI cohort (Fig. 3E, F).

Furthermore, the multivariate Cox regression analy-
sis, ROC curve and DCA were also performed in the 
two validation cohorts. As expected, we found that 
the 50-LPS exhibited a consistent powerful ability and 
utility for OS-prediction and dwarfed other clinical 
factors including TNM stage, serum AFP level, and VI 
(Fig. 3H, I, K, L).

Distinct transcriptional and genomic characteristics 
of the two prognostic groups
In order to better characterize the biomolecular char-
acteristics of the two risk-groups, differential analyses 
of their transcriptome and somatic mutation data were 
conducted. We obtained the differential expressed genes 
between the two prognostic groups and performed GSEA 
to identify pathways enriched in each subgroup. As 
shown in Fig. 4A, the high-risk group typically enriched 
in some pathways relevant to tumor proliferation and 
metastasis such as G2M checkpoint, E2F targets, epithe-
lial-mesenchymal transition (EMT), while the low-risk 
group mainly enriched in several metabolism-relevant 
pathways including fatty acid metabolism and bile acid 
metabolism.

To further investigate the differences in somatic muta-
tion frequency between the two subgroups, we analyzed 
genes with high mutation frequency or in important 
pathways relevant to HCC, including P53, cell cycle path-
way, WNT beta-catenin pathway, and hepatic differentia-
tion. Results in Fig. 5B showed that the high-risk group 

Table 1  The composition of the 50‐LPS

Pair 1–25 LncRNA 1 LncRNA 2 Pair 26–50 LncRNA1 LncRNA2

Pair1 TMEM220-AS1 NRAV Pair26 LINC01554 AL139423.1

Pair2 TMEM220-AS1 SREBF2-AS1 Pair27 AC026362.1 LINC02487

Pair3 LINC00324 AC074117.1 Pair28 TMEM220-AS1 ZNF433-AS1

Pair4 LINC00324 PCAT6 Pair29 ZNF433-AS1 MAFG-DT

Pair5 LINC01554 AC009005.1 Pair30 LINC00324 HMGN3-AS1

Pair6 LINC00324 NCK1-DT Pair31 PXN-AS1 CYTOR

Pair7 AC099329.2 C2orf27A Pair32 TMEM220-AS1 AL671710.1

Pair8 LINC00324 LINC00205 Pair33 AC099329.2 NRAV

Pair9 AL049840.6 DANCR Pair34 TMEM220-AS1 LINC01011

Pair10 LINC02362 TDRKH-AS1 Pair35 LINC00324 MAPKAPK5-AS1

Pair11 GHRLOS TMCC1-AS1 Pair36 LINC00324 SLC16A1-AS1

Pair12 TMEM220-AS1 MKLN1-AS Pair37 LINC00324 AC009403.1

Pair13 AC099329.2 AL365203.2 Pair38 TMEM220-AS1 AL355987.4

Pair14 ZNF337-AS1 AC012073.1 Pair39 ZNF337-AS1 GIHCG

Pair15 AC099329.2 PCAT6 Pair40 AL359643.3 TMCC1-AS1

Pair16 TMEM220-AS1 AP001469.3 Pair41 GHRLOS AC027097.1

Pair17 AC019080.1 AC124798.1 Pair42 AL050341.2 MKLN1-AS

Pair18 PXN-AS1 AC009005.1 Pair43 AL353708.1 AL365203.2

Pair19 AC099329.2 PXN-AS1 Pair44 NCK1-DT LINC00513

Pair20 TMEM220-AS1 LINC01134 Pair45 ZNF337-AS1 AL365203.2

Pair21 NDUFB2-AS1 AC145343.1 Pair46 AC012146.1 AL355987.4

Pair22 LINC02499 AC099850.2 Pair47 TBC1D8-AS1 AC027097.1

Pair23 AC019080.1 LINC01134 Pair48 LINC00324 LINC01134

Pair24 AL359643.3 AC107021.2 Pair49 GHRLOS FOXD2-AS1

Pair25 AC099329.2 DCST1-AS1 Pair50 PXN-AS1 GHRLOS
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displayed a higher mutation frequency of TP53 (46%) 
than the low-risk group (21%), implying the dysregula-
tion of cell proliferation in high-risk group.

Difference of immune infiltration landscape in two HCC 
subgroups
Because recent study indicated that immunologic back-
ground may influence the prognostic result of HCC 
patients, the difference of the immune cell infiltra-
tion between the two prognostic groups deserves fur-
ther elaboration. Using the CIBERSORT algorithm, we 

revealed that the low-risk group had a relatively higher 
level of tumor-infiltrating immune cells including naïve 
B cells, CD8+ T cells, monocytes, M1 macrophages and 
resting Mast cells, while the high-risk group had a richer 
infiltration of follicular helper cells, regulatory T cells, 
M0 macrophages and neutrophils (Fig. 4B).

Correlation of the HCC subgroups with clinical 
characteristics and previously reported subclasses
We explored the relationship between the clinicopatho-
logical features and HCC subgroups classified by our 

Fig. 2  The overall survival outcome of the two risk subgroups stratified by the 50-LPS in the training cohort (TCGA-LIHC). The Kaplan–Meier curves 
of overall survival for the entire training cohort (A) and patients in TNM I + II (B) and TNM III + IV (C). The time-dependent ROC analysis of the 50-LPS 
in the training cohort (D). Univariate and multivariate Cox regression analyses of OS in the training cohort (E). DCA of prognostic factors identified 
from univariate cox in training cohort (F)

(See figure on next page.)
Fig. 3  Performance of the 50-LPS in two external cohorts. The Kaplan–Meier curves of overall survival for the entire CHCC cohort (A) and TNM 
I + II (B) and TNM III + IV (C) patients. The Kaplan–Meier curves of overall survival for the entire LIRI cohort (D) and TNM I + II (E) and TNM III + IV (F) 
patients. The time-dependent ROC analysis of the 50-LPS in the CHCC cohort (G) and LIRI cohort (J). Univariate and multivariate Cox regression 
analyses of OS in the CHCC cohort (H) and LIRI cohort (K). DCA of prognostic factors identified from univariate cox in CHCC cohort (I) and LIRI 
cohort (L)
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Fig. 3  (See legend on previous page.)
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novel signature in the TCGA-LIHC cohort. As illustrated 
in the heatmap (Fig. 5A), samples in the two subgroups 
had several different clinicopathological characteristics. 
According to the result of chi-square test, the high-risk 
group was  correlated with advanced pathologic stage 
(p < 0.001), high serum AFP level (p = 0.003), and more 
frequent VI situation (p = 0.002), but displayed no dif-
ference with the low-risk group in age, gender and liver 
cirrhosis.

What’s more, we compared our classification with 
previously published HCC molecular subclasses to bet-
ter understand the molecular background underlying 
the two prognostic subgroups. The heatmap (Fig.  5A) 
revealed that the high-risk group was obviously linked 
to Hoshida’s [30] S1/S2 subclass (p < 0.001), Lee’s [31] A 
subclass (p < 0.001), Roessler’s [32] subgroup A(p < 0.001), 
Chiang’s [33] proliferation (p < 0.001) class and Boyault’s 
[34] G2/G3 (p < 0.001), whereas the low-risk group was 
significantly correlated with Hoshida’s S3 (p < 0.001), 
Lee’s B subtype (p < 0.001), Chiang’s CTNNB1 (p < 0.001) 
class and Boyault’s G4/G5 subclass(p < 0.001).

Correlation between the signature and chemotherapeutics
Since the two groups of patients with different OS out-
comes have different biological characteristics, we then 
wanted to find out whether there was a difference in 
chemotherapeutic drug sensitivity between them.

Using the subclass mapping method, we compared the 
transcriptome profile of the two subgroups with our pre-
vious cohort containing 147 HCC patients who received 
TACE. Surprisingly, we found that the low-risk group was 
significantly correlated with the TACE-response group 
(p < 0.001, Fig. 6A), while the high-risk group showed an 
obvious similarity to the TACE-resistant group (p < 0.001, 
Fig. 6A), which indicated that the low-risk group but not 
the high-risk group would benefit from TACE therapy.

In addition, we also explored the efficacy of different 
antitumor agents between the two groups. The result of 
Wilcoxon rank-sum test revealed that the low-risk group 
had a lower predicted half maximal inhibitory concentra-
tion (IC50) of sorafenib, vincristine and methotrexate, 
whereas the high-risk group had lower predicted IC50 of 
gemcitabine, epirubicin and etoposide (Fig.  6B), which 
meant that this signature could be a promising indicator 
for chemosensitivity prediction.

Hub lncRNA screening identified TDRKH‑AS1 as a key 
lncRNA in HCC
To screen out the hub lncRNAs included in the 50-LPS, 
we performed differential expression analysis as well 
as survival analysis in multiple HCC cohorts. In the 50 
tumor samples with paired normal liver tissue from 
TCGA-LIHC cohort, we found that most of the lncR-
NAs included in the 50-LPS were upregulated in tumor 
compared with normal liver (Fig.  7A). Especially, ten 

Fig. 4  Biological features and immune cell infiltration of the two risk subgroups stratified by the 50-LPS. Pathway enrichment analysis by GSEA 
(A). The difference of immune cell infiltrated in the tumor microenvironment between the two groups (B). *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001
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lncRNAs were significantly upregulated (log2FC > 1, 
FDR < 0.05, Fig. 7B), implying the potential function role 
of these lncRNAs in the carcinogenesis of HCC. Next, we 
further tested the expression pattern of these ten lncR-
NAs in CHCC cohort and GSE77509, which included 
159 HCC samples and 20 HCC samples with paired nor-
mal liver tissue, respectively. Moreover, the prognostic 

significance of them was also evaluated in TCGA-LIHC 
and CHCC cohort.

As shown in Fig.  7C–E, two lncRNAs, TDRKH-AS1 
and MAFG-DT, were consistently upregulated in three 
cohorts and associated with poor survival in TCGA-
LIHC and CHCC cohort. We further validated the 
expression pattern of the two lncRNAs in 5 paired HCC 

Fig. 5  Clinical, molecular and genomic characteristics of the two risk subgroups stratified by the 50-LPS. Clinical characteristics of HCC subgroups 
and association with previous HCC molecular subtypes (A). The difference of frequencies in gene mutation between the two groups (B). *p < 0.05, 
**p < 0.01, ***p < 0.001
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and normal liver tissues from our center by using quan-
titative real-time PCR. As expected, TDRKH-AS1 and 
MAFG-DT were both highly expressed in HCC than nor-
mal liver (p < 0.01, Fig.  7F). However, TDRKH-AS1 was 
more abundant in relative expression than MAFG-DT, 
indicating a more essential role of TDRKH-AS1 in HCC 
tumor biology. Therefore, TDRKH-AS1 was considered 
as the hub lncRNA for further function investigation.

Validation of the biological function of TDRKH‑AS1 in HCC
To validate the biological function of TDRKH-AS1 in 
HCC, we performed loss-of-function assays in HCC cell 
lines, MHCC97H and Huh7. After knocking  down the 
expression of TDRKH-AS1 using short hairpin RNAs 
(shRNA) (p < 0.01 in Huh7, p < 0.001 in MHCC97H, 
Fig.  8A), we conducted CCK8 and colony formation 
assays to detect the influence of TDRKH-AS1 on cell 
growth of HCC in  vitro. As shown in the CCK8 assay 
(p < 0.001 in Huh7, p < 0.01 in MHCC97H, Fig.  8B, C), 
the cell growth rate of both cell lines was significantly 
decreased after knocking down TDRKH-AS1. Restora-
tion  of TDRKH-AS1 expression  in Huh7 cell line  could 
restore cell growth (p<0.001,  Additional file  1: Fig.  S1 
A,  B). Similarly, the result of colony formation assay 
revealed that the proliferation ability of both cell lines 
was significantly hampered when TDRKH-AS1 was 
knocked down (p < 0.01 in Huh7, p < 0.01 in MHCC97H, 
Fig. 8D, E). In addition, the percentage of apoptotic cells 
were remarkably increased (p < 0.001 in Huh7, p < 0.001 in 
MHCC97H, Fig. 8F, G, H), and the pro-apoptotic protein, 

cleaved caspase3, was increased after knockdown of 
TDRKH-AS1 (Fig. 8I). Moreover, we found that the level 
of Akt phosphorylation on Ser 473 was decreased 
(Fig.  8I).    These results suggested that TDRKH-AS1 
might be essential for tumor growth and cell survival of 
HCC.

Discussion
In this study, we developed a novel individualized 
lncRNA signature, 50-LPS, to predict the risk of prog-
nosis in patients with hepatocellular carcinoma after 
surgery. This signature was successfully validated in two 
external datasets and displayed high stability and robust 
predictive ability in all three datasets. Moreover, it was 
more reliable than serum AFP level, tumor vascular inva-
sion, cirrhosis and TNM stage for OS prediction. Our 
study provided a novel prognostic indicator for clinical 
application.

As a qualitative signature, the 50-LPS exhibited a bet-
ter feasibility than quantitative risk score that mostly 
reported. Since it was designed by using the majority vot-
ing rule based on the REOs trait of lncRNA pairs within 
a single sample, it did not require pre-collection of mas-
sive samples for data normalization and cut-off determi-
nation. When using the 50-LPS, the relative expression 
rank of lncRNAs within a single sample can be obtained 
by RNA sequencing, microarray or mere quantitative 
polymerase chain reaction, without considering sequenc-
ing depth or batch influence. Therefore, the 50-LPS can 
be easily applied personally. Ao et  al. [35] reported a 

Fig. 6  Correlations of the HCC subgroups with the response to different chemotherapeutics. Subclass mapping correlation analysis between 
HCC subgroups and samples with different sensitivities to TACE (A), and several anticancer drugs (B). TACE-NR, TACE non-responder; TACE-R, TACE 
responder. ** p<0.01,*** p<0.001,**** p<0.0001



Page 11 of 15Bu et al. Cancer Cell International           (2022) 22:95 	

Fig. 7  Hub lncRNA screening identified TDRKH-AS1 as a key lncRNA in HCC. Expression heatmap of the 55 lncRNAs included in the 50-LPS in the 
50 paired tumor and normal liver tissues of TCGA-LIHC cohort (A). Volcano plot of the differential test and the top 6 differentially expressed lncRNAs 
with log2FC > 1 and FDR < 0.05 were marked in orange (B). Venn diagram identified two lncRNAs (TDRKH-AS1 and MAFG-DT) that were differentially 
expressed in TCGA-LIHC, CHCC and GSE77509, as well as associated with overall survival in TCGA-LIHC and CHCC cohort (C). The Kaplan–Meier 
curves of overall survival for TDRKH-AS1 and MAFG-DT in TCGA-LIHC (D, E). Real-time PCR validated the expression difference of TDRKH-AS1 and 
MAFG-DT in five paired HCC and normal liver tissues (F). *p < 0.05, **p < 0.01, ***p < 0.001. T, tumor; N, normal
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qualitative prognostic signature consisting of 20 gene-
pairs for HCC and proved that qualitative signatures 
were reliable in prognosis prediction. However, Ao’s sig-
nature only focused on the patients with early-stage HCC 
and protein-coding genes. Our study revealed that quali-
tative signatures derived from lncRNA pairs were also 
powerful and feasible in prognosis prediction for HCC in 
early stage as well as advanced stage. A target panel will 
be designed for clinical translational research in our next 
work.

Intriguingly, the high- and low-risk groups identi-
fied by the 50-LPS was, to some extent, in agreement 
with previously reported molecular subtypes [9] of HCC 
despite of different methods and criteria used. It sup-
ports the notion that HCC patients from the two risk 
groups stratified by the 50-LPS might represent dis-
tinct disease entities. We observed that HCC patients 
in the high-risk group were biologically deficient in p53 
pathway and active in E2F pathway and EMT pathway. 
Clinically, patients in the high-risk group exhibited more 

Fig. 8  Validation of the biological function of TDRKH-AS1 in HCC. TDRKH-AS1 was successfully knocked down in Huh7 and MHCC97H cells (A). 
CCK8 assay in Huh7 (B) and MHCC97H (C) after knockdown of TDRKH-AS1. Colony formation assay in Huh7 and MHCC97H after knockdown of 
TDRKH-AS1 (D, E). Apoptosis assay in Huh7 and MHCC97H after knockdown of TDRKH-AS1 (F–H). Cleaved caspase3 and phospho-Akt (Ser473) were 
detected in Huh7 and MHCC97H by western blotting after knockdown of TDRKH-AS1 (I). *p < 0.05, **p < 0.01, ***p < 0.001
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aggressive traits with high AFP level, poor tumor dif-
ferentiation, vascular invasion, advanced cancer stages, 
and poor prognosis. As a contrast, the low-risk subclass 
showed retained hepatocyte-like phenotype, with mod-
erate-high tumor differentiation, and better prognosis. In 
addition, nearly half of the high-risk patients had TP53 
mutation. TP53 mutation could cause genomic instability 
and uncontrolled cell proliferation [36, 37], which might 
partially account for the poor OS outcome of the high-
risk group. However, there is still a variation in the pro-
portion of each risk group from different cohorts, which 
might result from the regional etiology difference or 
genetic background difference.

Although immunotherapy offers new promise to 
patients with HCC [38], there is still a lack of validated 
biological markers for predicting the therapy efficacy 
and guiding clinical decision-making [39]. In our study, 
tumor tissues in the low-risk group were higher in CD8+ 
T cell infiltration than the high-risk group, indicating 
that the tumor immune microenvironment in the  low-
risk tumor was in a more activated status. Patients from 
the low-risk group might be more likely to benefit from 
the therapy of immune checkpoint inhibitors (ICIs), yet 
it needs future validation. In addition, the submap results 
prompted that HCC patients in the low-risk group might 
be more likely to respond to TACE therapy, which is the 
standard treatment for intermediate-stage HCC [40]. 
Apart from that, we found that the  50-LPS could pre-
dict the efficacy of several common anticancer drugs, 
including sorafenib, vincristine, methotrexate, epirubicin, 
etoposide and gemcitabine. Taken together, the 50-LPS 
may be used as a tool together with other indicators in 
evaluating the efficacy of ICIs, TACE and some antican-
cer drugs, which may help improve the dilemmas in the 
precision treatment of HCC.

Our study has identified tens of OS-related lncRNAs 
in HCC and demonstrated in  vitro that TDRKH-AS1 
could influence the cell growth of HCC. A previous 
study reported that lncRNA TDRKH-AS1 could target 
β-catenin in the Wnt signaling pathway to promote colo-
rectal cancer cell proliferation and invasion [41]. How-
ever, our study revealed that knockdown of TDRKH-AS1 
might influence cell proliferation by inducing apoptosis 
in HCC. Our future researches will focus on the molecu-
lar signal pathway that TDRKH-AS1 may trigger in HCC, 
which would help us understand the intrinsic mechanism 
determining different prognosis of HCC patients more 
comprehensively.

Certainly, there are several limitations in our study that 
need to be improved. A major limitation is that the train-
ing dataset and validation datasets are all from public 
databases. A prospective study will be needed to validate 
the effectiveness and utility of the 50-LPS. Additionally, 

in order to improve the accuracy of OS prediction, the 
50-LPS could be used in combination with other clin-
icopathologic features, such as AFP, VI and pathological 
stage in the future.

Conclusions
In summary, current study developed a novel individu-
alized lncRNA signature, 50-LPS, that could not only 
predict the prognosis of HCC patients robustly but also 
provide theoretical basis for precision therapy. Addition-
ally, TDRKH-AS1 was identified as a key lncRNA in the 
proliferation of HCC. The 50-LPS might help guide per-
sonalized therapy for HCC patients in clinical practice.
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