
Zhu et al. Cancer Cell International          (2022) 22:124  
https://doi.org/10.1186/s12935-022-02544-8

RESEARCH

Ferroptosis-related gene SLC1A5 is a novel 
prognostic biomarker and correlates 
with immune infiltrates in stomach 
adenocarcinoma
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Abstract 

Background: Stomach adenocarcinoma (STAD) is associated with high morbidity and mortality rates. Ferroptosis is 
an iron-dependent form of cell death, which plays an important role in the development of many cancers. Tumor-
associated competing endogenous RNAs (ceRNAs) regulate tumorigenesis and development. Our study aimed to 
construct ceRNA networks and explore the relationship between ferroptosis-related genes in the ceRNA network and 
immune infiltration in STAD.

Methods: Based on the interactions among long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and messenger 
RNAs (mRNAs), a ceRNA network was constructed to illustrate the relationships among lncRNAs, miRNAs, and mRNAs. 
Subsequently, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) functional enrichment 
analyses were carried out to explore the functions and interactions of the differentially expressed (DE) mRNAs related 
to the ceRNA network. Differential expression and prognostic analysis of ferroptosis-related genes in the ceRNA net-
work were performed using the R package “limma” and “survminer.” The correlation between ferroptosis-related genes 
and tumor-infiltrating immune cells was analyzed using Spearman correlation analysis and CIBERSORT. Quantitative 
real-time PCR (qRT-PCR) was used to validate the expression of ferroptosis-related genes in STAD cells lines.

Results: A ceRNA network consisting of 29 DElncRNAs, 31 DEmiRNAs, and 182 DEmRNAs was constructed. These 
DEmRNAs were significantly enriched in pathways related to the occurrence and development of STAD. The ferrop-
tosis-related gene SLC1A5 was upregulated in STAD (P < 0.001) and was associated with better prognosis (P = 0.049). 
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Background
Stomach adenocarcinoma (STAD) is the fifth most com-
mon cancer type worldwide and the third leading cause 
of cancer-related deaths [1]. STAD is the most common 
histological type of malignant tumor that originates in 
the stomach and is a heterogeneous disease with differ-
ent phenotypes and genotypes. Although the treatment 
of STAD has rapidly advanced due to the development 
of laparoscopic technology [2], because of the absence 
of clear early symptoms, most patients with STAD are 
already at an advanced stage at the time of diagnosis 
and are prone to distant metastasis; thus, the prognosis 
remains poor [3–5]. Therefore, new STAD treatments 
and prognostic targets are urgently needed to improve 
the survival rate of these patients.

The ceRNA hypothesis [6] was first proposed in 2011, 
and posits that lncRNAs regulate the expression of tar-
get mRNAs by adsorbing miRNAs and thereby act as 
ceRNAs; they competitively bind to shared miRNAs, 
inhibiting the degradation of mRNA and thus acting as 
miRNA sponges. To date, the complex oncogenesis-
related ceRNA network of lncRNA–miRNA–mRNA 
interactions has been explored in various types of cancer, 
such as colorectal cancer [7], cervical cancer [8], and lung 
squamous cell carcinoma [9]. However, ceRNA network 
analysis in patients with STAD is relatively rare.

Ferroptosis was first proposed as a new form of cell 
death in 2012. Ferroptosis leads to cancer cell death 
by regulating iron-, amino acid and glutathione-, and 
ROS-metabolism, especially for the removal of aggres-
sive malignancies that show resistance to conventional 
therapies [10]. Ferroptotic cancer cells may influence 
the therapeutic effect of anti-tumor immunity by releas-
ing signals such as oxidized lipid mediators, or some 
iron-sagging cells may suppress the immune system and 
promote the growth of tumor cells [11]. However, few 
studies have explored the correlation between ferroptosis 
and immune infiltration in STAD.

Therefore, we comprehensively analyzed and identified 
some RNAs, including lncRNAs, miRNAs, and mRNAs. 
Based on these RNAs, we constructed a ceRNA network 

to elucidate the lncRNA–miRNA–mRNA interactions 
in STAD and identified biomarkers for the development 
of therapies for STAD. Finally, ferroptosis-related genes 
were screened in the ceRNA network and subjected 
to differential expression and prognostic analyses, to 
explore the relationship between them and immune infil-
tration in STAD.

Methods
Data collection and preprocessing
We used the genomics data commons data transfer tool 
(https:// gdc. cancer. gov/ access- data/ gdc- data- trans fer- 
tool. html) to download the published the cancer genome 
atlas (TCGA) RNA-seq data, miRNA data, and the cor-
responding clinical information on STADs. The screen-
ing criteria for lncRNAs and mRNAs included "Project: 
TCGA-STAD," "Experimental strategy: RNA-Seq," and 
"Workflow type: HTSeq-Counts" which included 375 
STAD tissues and 32 normal gastric tissues. The screen-
ing criteria for miRNA included "Project: TCGA-STAD," 
"Experimental strategy: miRNA-Seq," and "Workflow 
type: miRNA Profiling", which included 446 STAD tis-
sues and 45 normal gastric tissues. The clinical follow-up 
datasets from 409 patients with STAD were also obtained 
from TCGA database.

Analysis of the DE lncRNAs, miRNAs, and mRNAs
We used the “edgeR” package [12] to screen DElncRNAs, 
DEmiRNAs and DEmRNAs with thresholds of false dis-
covery rate (FDR) < 0.01 and |log 2 (fold change [FC])|> 1. 
Volcano plots were generated using the “ggplots.”

Prediction of DEmRNAs targeted by DEmiRNAs
We used the miRcode (http:// www. mirco de.org/) data-
base [13] to predict the interactions between DElncR-
NAs and DEmiRNAs. In addition, mRNAs targeted by 
DEmiRNAs were retrieved from the TargetScan (http:// 
www. targe tscan. org/), miRTarBase (http:// mirta rbase. 
mbc. nctu. edu. tw/ php/ index. php), and miRDB (http:// 
www. mirdb. org/) databases [14–16]. The mRNAs that 
were identified by all three databases and then overlapped 

The CIBERSORT database and Spearman correlation analysis indicated that SLC1A5 was correlated with eight types of 
tumor-infiltrating immune cells and immune checkpoints, including PD-L1(CD-274) and PD-1(PDCD1). The SLC1A5 
mRNA was found to be highly expressed in STAD cells lines.

Conclusions: Our study provides insights into the function of ceRNAs in STAD and identifies biomarkers for the 
development of therapies for STAD. The ferroptosis-related gene SLC1A5 in the ceRNA network was associated with 
both tumor-infiltrating immune cells and immune checkpoints in the tumor microenvironment, suggesting that 
SLC1A5 may be a novel prognostic marker and a potential target for STAD immunotherapy in the future.
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checkpoints
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with the DEmRNAs were the DEmRNA candidates. The 
overlapping target genes were identified through Venn 
overlap analysis.

Construction of the ceRNA network
Based on the DERNAs and the relationships between the 
identified miRNA-mRNA and miRNA-lncRNA pairs, 
Cytoscape (version 3.7.2) was used to construct and visu-
alize the ceRNA network [17].

Functional enrichment analysis
The “ClusterProfiler” software package [18] in R soft-
ware was used to perform Gene Ontology (GO) func-
tional enrichment [19] and Kyoto encyclopedia of genes 
and genomes (KEGG) pathway enrichment analyses [20]. 
P < 0.05, was used as the threshold of statistical significance 
in the GO and KEGG enrichment analyses. The results 
were visualized using the “ggplots” package of R software.

Screening for ferroptosis‑related genes in the ceRNA 
network and prognostic analysis
Sixty ferroptosis-related genes were queried from the 
reported literature [21–24] and are shown in Additional 
file 1. The ferroptosis-related genes were intersected with 
DE miRNA-targeted genes to derive the associated genes. 
For the selected genes, the median expression value was 
used as the cut-off point, and the patients with STAD 
were divided into high and low-expression groups, and 
Kaplan–Meier survival curves were drawn. The log-rank 
test was used to compare the difference in survival time 
between the high and low-expression groups. A similar 
analysis was performed for upstream miRNAs. Finally, 
we performed univariate and multivariate analyses of fer-
roptosis-related genes using the R package "survival" to 
identify their prognostic significance.

Gene set enrichment analysis (GSEA)
In the TCGA cohort, we divided the 375 patients with 
STAD into two groups according to the median expres-
sion values of ferroptosis-related genes and chose the 
h.all.v6.2.symbols.gmt in the Molecular Signatures Data-
base (MSigDB) as the reference gene set to perform 
GSEA analysis.

CIBERSORT estimation and immune‑related analysis
We used the CIBERSORT algorithm to evaluate 22 
immune cell types in STAD. Samples were only used for 
further analysis when the CIBERSORT output p < 0.05. 
To show the correlation of various immune cells, a co-
expressed heatmap was drawn based on the results of 
the Spearman correlation analysis. The Wilcoxon rank-
sum test revealed statistically significant differences in 
the proportion of immune infiltrating cells between the 

two groups with high and low expression of ferroptosis-
related genes (p < 0.05). Spearman correlation analysis 
was performed for the selected ferroptosis-related bio-
marker in the ceRNA network and the proportion of 
each related immune cell with p < 0.05. Immune cells 
differentially expressed in the high and low groups of 
ferroptosis-related genes were intersected with immune 
cells associated with the expression of ferroptosis-related 
genes using the R package “VennDiagram” to obtain 
immune cells associated with ferroptosis-related genes. 
Spearman correlation analysis was used to assess the 
correlation between ferroptosis -related genes and the 
expression of immune checkpoints PD-1, PD-L1 and 
CTLA4. Finally, we downloaded two immunotherapy 
cohorts, the IMvigor210 cohort of atezolizumab (anti-
PD-L1 antibody) for advanced metastatic cell carcinoma 
[25] and the GSE78220 cohort of pembrolizumab (anti-
PD-1 antibody) for melanoma [26]. The correlation of 
iron death-related gene expression with anti-PD-L1 and 
PD-1 treatment response was analyzed in these two 
immunotherapy cohorts, respectively, and P < 0.05 was 
considered statistically significant.

Cell lines and cell culture
STAD cell lines AGS, MGC-803, SGC-7901, BGC-823, 
MKN-45, MKN-28, HGC-27, and human gastric epithe-
lial cells (GES-1) were purchased from ATCC (American 
Type Culture Collection, Manassas, VA, USA). All STAD 
cell lines were cultured in 1640 medium (Gibco, Gaith-
ersburg, MD, USA) supplemented with 10% fetal bovine 
serum (FBS, Gibco-BRL, Paisley, UK), 100 U/mL penicil-
lin, and 100 μg/mL streptomycin at 37 °C in 5%  CO2.

RNA extraction and quantitative real‑time PCR (qRT‑PCR)
Total RNA was extracted from cell lines using TRIzol® 
Reagent (Invitrogen, Carlsbad, CA, USA). Total RNA 
was reverse transcribed into cDNA using PrimeScript™ 
RT Master Mix (Takara, Dalian, China) and then used 
to perform qRT-PCR with SYBR® qPCR Master Mix 
(Vazyme, Nanjing, China). Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) was used as the internal con-
trol for gene quantification. The  2−ΔCT value was calcu-
lated for every sample and normalized to that of GAPDH. 
The primer sequences used for PCR are listed in Addi-
tional file 2.

Cell Counting Kit‑8 assay
Cell Counting Kit-8 (CCK-8, Dojindo Laboratories Kum-
amoto, Japan) for cell proliferation analysis, according to 
the manufacturer’s instructions. Cells were grown in each 
well of a 96-well plate at a density of 2 ×  103 cells/well. 
Afterwards, 100 ul of CCK-8 solution (CCK-8 solution 
was prepared from 10 ul of CCK-8 reagent and 100 ul of 
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culture medium) was added to each well at different time 
points (24 h, 48 h, 72 h and 96 h), and the absorbance was 
measured at 450 nm after incubation at 37 °C for 2 h.

Transwell assay
For cell migration assays, Transwell chambers (Corn-
ing, USA) with 0.8um pore size were placed in 24-well 
plates. In the lower chamber, 1640 containing 10% fetal 
bovine serum was added, and then MGC-803 cell line 
transfected with siRNA were inoculated with serum-
free medium in the upper chamber at a density of 5 ×  104 
cells/well and incubated for 48  h at 37  °C. Cells that 
migrated to the lower chamber were fixed with 4% para-
formaldehyde for 30 min and then stained with 1% crys-
tal violet for 30 min. The unmigrated cells at the bottom 
of the chamber were gently wiped with a cotton swab and 
the stained cells that had migrated to the lower chamber 
were photographed with a light microscope.

Apoptosis detection by flow cytometry
MGC-803 cell line transfected with siRNA were col-
lected, stained with FITC Annexin V and propidium 
iodide (BD, USA) and analyzed for apoptosis by flow 
cytometry (BD, USA). PI-negative and FITC Annexin 
V-positive cells identified apoptosis at an early stage, 
while late or already dead cells were positive for both 
FITC Annexin V and PI. The results were analyzed by 
FlowJo software.

Results
Identification of DEmRNAs, DElncRNAs and DEmiRNAs 
between STAD tissues and normal gastric tissues
By applying the screening criteria, we identified 4343 
DEmRNAs (2191 upregulated and 2152 downregulated) 

between STAD and normal gastric tissues. We identi-
fied 327 DElncRNAs (224 upregulated and 103 down-
regulated) and 242 DEmiRNAs (178 upregulated and 64 
downregulated) in STAD tissues compared with nor-
mal gastric tissues. The corresponding volcano plots are 
shown in Fig. 1.

Prediction of DEmRNAs targeted by DEmiRNAs
To identify the target mRNAs, we input the 31 DEmiR-
NAs into the TargetScan, miRTarBase, and miRDB 
databases. A total of 1260 mRNAs were identified as 
targets for the 31 DEmiRNAs. The 1260 candidate 
mRNAs predicted by these databases intersected with 
4343 DEmRNA candidates, and 182 DEmRNAs were 
differentially expressed and shared as targets (Fig. 2A). 
A total of 309 pairs of interactions were identified 
between the 182 DEmRNAs and 31 DEmiRNAs. Only 
DEmiRNAs that interacted with DEmRNAs and DEl-
ncRNAs were selected to construct the ceRNA net-
work. In summary, 31 DEmiRNAs, 182 DEmRNAs, 
and 29 DElncRNAs were used to construct the ceRNA 
network.

Construction of the ceRNA network
A lncRNA-miRNA-mRNA ceRNA network containing 
242 molecules and 440 pairs of interactions (131 pairs 
of DEmiRNA–DElncRNA and 309 pairs of DEmiRNA–
DEmRNA interactions) was constructed using the 
data analyzed above. This network included 131 pairs 
of DEmiRNA–DElncRNA interactions and 309 pairs 
of DEmiRNA–DEmRNA interactions. Subsequently, 
Cytoscape (version3.7.2) software was used to visualize 
and map the entire network (Fig. 2B).

Fig. 1 Differentially expressed RNAs (DERNAs) in stomach adenocarcinoma. Volcano plots of A DEmRNAs, B DElncRNAs and C DEmiRNAs. 
Upregulated transcripts are shown in red and downregulated transcripts in green. DE: differentially expressed; lncRNAs: long noncoding RNA; 
miRNAs: microRNAs; FC: fold change; FDR: false discovery rate
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Functional enrichment of DEmRNAs
GO consists of three parts: biological processes, cel-
lular components, and molecular functions. The top 
ten aspects in each part are shown in Fig. 3A. KEGG 
pathway analysis revealed that these DEmRNAs were 
enriched in a total of 14 signaling pathways (Fig. 3B). 
Additional file  3 represents the actual genes in the 

GO enriched biological processes and the KEGG 
pathways.

SLC1A5 is upregulated in STAD and associated with better 
prognosis
The 60 ferroptosis-related genes were intersected with 
182 genes targeted by DEmiRNAs to obtain the gene 
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SLC1A5, whose lncRNA-miRNA-mRNA relation-
ship pair is shown in the Fig.  4A. In the TCGA cohort, 
SLC1A5 was highly expressed in the STAD tissues com-
pared to normal gastric tissues (p = 7.5e−08) (Fig.  4B), 
whereas its upstream has-mir-137 was expressed at low 
levels in STAD tissues (p = 0.0022) (Fig.  4C). Survival 
analysis showed higher overall survival of patients with 
high SLC1A5 expression (p = 0.049) (Fig. 4D), and lower 
overall survival of patients with high has-mir-137 expres-
sion (p = 0.048) (Fig. 4E). In addition, univariate (Fig. 5A) 
and multivariate Cox regression analyses (Fig.  5B) 
showed that SLC1A5 expression (HR < 1) was a protec-
tive factor, while age (HR > 1) and tumor stage (HR > 1) 
were risk factors.

Gene sets enriched between high and low‑expression 
groups of SLC1A5 in GSEA analysis
In the SLC1A5 high expression group, 27 (out of 50) 
gene sets were upregulated, 12 of which were signifi-
cantly enriched with a p-value less than 0.05. In addition, 
three gene sets were significantly enriched in the SLC1A5 
low-expression group, with p-values less than 0.05. The 
significantly upregulated hallmark gene sets associated 

with tumorigenesis in the high SLC1A5 expression group 
included “DNA Repair”, “E2F Targets”, “G2M Check-
point”, “MYC Targets V1”, and “MYC Targets V2”. In the 
low SLC1A5 expression group, the significantly upregu-
lated hallmark gene set was “KRAS Signaling up”, which 
is involved in the immune response. Snapshots of the 
enrichment results are shown in Fig. 6.

Composition of tumor‑infiltrating immune cells 
between low‑ and high‑ SLC1A5 expression groups
We evaluated the composition of the significant tumor-
infiltrating immune cells in STAD tissues using the 
CIBERSORT algorithm, and the results are shown as a 
histogram (Fig. 7A). Co-expression analysis using tumor-
infiltrating immune cells in STAD samples was per-
formed (Fig.  7B). Furthermore, the Wilcoxon rank-sum 
test indicated that B memory cells (P < 0.001), plasma 
cells (P = 0.047), T cells CD4 memory resting (P = 0.009), 
T cells follicular helper (P = 0.012), monocytes 
(P = 0.025), macrophages M0 (P = 0.001), Macrophages 
M1 (P = 0.003), and eosinophils (p = 0.001) showed sig-
nificant differences in the immune cell fractions between 
the low- and high-SLC1A5 expression groups (Fig. 7C).
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Fig. 4 SLC1A5 and its upstream miR-137. A SLC1A5 and its upstream miR-137 that can be sponged by the BX255923.1. B The mRNA expression 
of SLC1A5 is significantly upregulated in stomach adenocarcinoma tissue as compared with normal gastric tissue. C The expression of miR-137 is 
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SLC1A5

Age

Gender

Grade

Stage

0.027

0.006

0.252

0.135

0.001

pvalue

0.673(0.474−0.955)

1.664(1.161−2.383)

1.242(0.857−1.800)

1.306(0.920−1.854)

1.426(1.152−1.765)

Hazard ratio

Hazard ratio
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Gender

Grade

Stage
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<0.001
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<0.001

pvalue

0.690(0.485−0.981)

1.875(1.303−2.700)
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1.380(0.965−1.974)

1.450(1.163−1.808)

Hazard ratio

Hazard ratio

0.0 0.5 1.0 1.5 2.0 2.5

A B

Fig. 5 Forest plot showing univariate (A) and multivariate regression analysis (B) to determine independent prognostic factors

Fig. 6 GSEA pathways using single-gene method of SLC1A5. A–E Upregulated gene sets in the high SLC1A5 expression group. A Enrichment plot: 
Hallmark_DNA_Repair. B Enrichment plot: Hallmark E2F_Targets_21. C Enrichment plot: G2M_Checkpoint. D Enrichment plot: Hall mark_MYC_
Targets_V1. E Enrichment plot: Hallmark_MYC_Targets_V2. F Downregulated gene sets in the group of high SLC1A5 expression: Enrichment plot: 
Hallmark_KRAS_Signalling_Up



Page 8 of 14Zhu et al. Cancer Cell International          (2022) 22:124 

Correlation of SLC1A5 expression with tumor‑infiltrating 
immune cells in the tumor microenvironment
To explore the correlation between SLC1A5 expression 
and tumor-infiltrating immune cells, Spearman correla-
tion analysis was performed with a p-value < 0.05. There 
was a significant correlation between SLC1A5 expres-
sion and the different types of immune cells, includ-
ing naïve B cells (p < 0.001, cor = − 0.22), B memory 
cells (p = 0.001, cor = − 0.21), plasma cells (p = 0.043, 
cor = 0.13), T cells CD4 memory resting (p < 0.001, 
cor = − 0.24), T cells CD4 memory activated (p = 0.017, 
cor = 0.16), T cells follicular helper (p < 0.001, 

cor = 0.24), resting natural killer (NK) cells (p = 0.036, 
cor = 0.14), and eosinophils (p = 0.037, cor = − 0.14) 
(Fig.  8). Eight DE immune cells were intersected with 
12 related immune cells to obtain eight immune cells, 
which were related to SLC1A5 expression. Including 
B memory cells, plasma cells, CD4 memory resting T 
cells, follicular helper T cells, monocytes, macrophages 
M0, macrophages M1 and eosinophils (Additional 
file  4). Spearman correlation analysis in TCGA-STAD 
cohorts of SLC1A5 with immune checkpoints showed 
that SLC1A5 expression was negatively correlated with 
PD-L1 (CD274) expression (R = − 0.25, p = 1.2e−06) 
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Fig. 7 A The proportion of immune cell composition in each stomach adenocarcinoma sample was determined by the CIBERSORT algorithm. B 
Co-expression analysis of 22 tumor-infiltrating immune cells in STAD samples. C Significant tumor-infiltrating immune cells were found between the 
high and low SLC1A5 expression groups in STAD samples
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(Fig. 9A) and positively correlated with PD-1 (PDCD1) 
expression (R = 0.13, p = 0.014) (Fig.  9B). However, 
the correlation between SLC1A5 and CTLA4 was not 
statistically significant (p = 0.085) (Fig.  9C). In the 
anti-PD-1 cohort (GSE78220 cohort), patients with 
low SLC1A5 expression were responsive to anti-PD-1 
therapy (p = 0.025), but in the anti-PD-L1 cohort 
(IMvigor210 cohort), the expression of SLC1A5 was 
not statistically significantly associated with response 
to anti-PD-L1 therapy (p = 0.11) (Additional file  5). 
This suggests that SLC1A5 may be a predictive marker 
for anti-PD-1 therapy. In summary, the above results 
suggest that SLC1A5 may be involved in the immune 
response in the tumor microenvironment by affecting 

immune cell composition and immune checkpoint 
expression in STAD.

Validation of SLC1A5 expression in STAD cell lines 
by qRT‑PCR
qRT-PCR was used to validate the expression of 
SLC1A5 in seven STAD cell lines (AGS, MGC-803, 
SGC-7901, BGC-823, MKN-45, MKN-28, and HGC-
27) and one human gastric epithelial cell line (GES-1). 
The results showed that SLC1A5 was highly expressed 
in most STAD cell lines compared to that in the con-
trol cells (GES-1) (Fig. 10). This was consistent with the 
trend of SLC1A5 expression in TCGA cohort.

Fig. 8 Significant correlation between SLC1A5 expression and immune cells. Significant correlation was found between SLC1A5 expression and 
immune cells including B memory cells (A), B cells naïve (B), eosinophils (C), macrophages M0 (D), macrophages M1 (E), mast cells resting (F), 
monocytes (G), NK cells resting (H), plasma cells (I), T cells CD4 memory activated (J), T cells CD4 memory resting (K), and T cells follicular helper (L)
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SLC1A5 inhibits proliferation and migration and promotes 
apoptosis of STAD cells
We selected MGC-803, a STAD cell line commonly 
used to study STAD phenotypes and with high SLC1A5 
expression, for Cell Counting Kit-8 assay, Transwell assay 
and apoptosis assay. The expression of SLC1A5 in MGC-
803 cells was knocked down by transfection with siRNA 
(Fig.  11A). The results of the Cell Counting Kit-8 assay 
showed a significant increase in the proliferation capac-
ity of the MGC-803 cell line with knockdown of SLC1A5 
expression compared to the control group (Fig.  11B). 
Transwell assay results also demonstrated a significant 
increase in the number of migrated cells in the MGC-803 
cell line with knockdown of SLC1A5 expression com-
pared to the MGC-803 cell line without knockdown of 
SLC1A5 (Fig.  11C). We also found that knockdown of 
SLC1A5 expression in the MGC-803 cell line inhibited 

Fig. 9 Correlation of SLC1A5 expression with PD-L1 (CD274) (A), PD-1 (PDCD1) (B), and CTLA4 expression (C) in the TCGA cohort
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Fig. 10 qRT-PCR validation of SLC1A5 expression in stomach 
adenocarcinoma (STAD) cells compared to control cells. *p < 0.05. 
**p < 0.01. ***p < 0.001

Fig. 11 Genetic depletion of SLC1A5 promotes the proliferation and migration and inhibits the apoptosis of MGC-803 cell line. A Effect of 
knockdown of SLC1A5 expression in MGC-803 cell line after transfection with siRNA. B Cell proliferation assay was analyzed by the CCK-8 method 
each day for 4 days. C Transwell assay was employed to evaluate the migration effects of SLC1A5-deficient MGC-803 cell line. The cells were 
imaged at ×20 magnification. D Flow cytometry apoptosis assay showed the SLC1A5-deficient inhibits apoptosis rate in MGC-803 cell line. Data are 
presented as the mean ± SEM. Statistical significance was analyzed by ANOVA or Student’s t test. *p < 0.05, **p < 0.01, ***p < 0.001



Page 11 of 14Zhu et al. Cancer Cell International          (2022) 22:124  

apoptosis in the flow cytometry assay (Fig.  11D). These 
results suggest that knockdown of SLC1A5 leads to 
enhanced proliferation and migration ability and reduced 
apoptosis ability of MGC-803 cell line.

Discussion
The development of gastroscopy has gradually increased 
the rate of diagnosis of STAD, but most patients with 
STAD are in the progressive stage when they are 
detected. Thus, surgery is not effective, and the avail-
able treatment options include chemo-, targeted-, and 
immune-therapies. The discovery and development of 
immunotherapeutic agents have brought significant sur-
vival benefits to patients with STAD and are increasingly 
challenging the traditional treatment paradigms involv-
ing chemotherapy and targeted agents [27]. Therefore, 
there is a need to further understand immunotherapy-
related genes as novel prognostic markers for STAD. In 
the present study, the ferroptosis-related gene SLC1A5 
was identified as a potential prognostic biomarker for 
STAD, its upstream molecule miR-137 was explored, and 
the correlation between SLC1A5 and tumor-infiltrating 
immune cells and immune checkpoints in STAD was 
investigated. Finally, the predictive value of SLC1A5 in 
immunotherapy response was evaluated.

SLC1A5 is a cell surface transporter that mediates the 
uptake of neutral amino acids, such as glutamine [28]. 
The intracellular glutamine pool plays a key role in the 
sustained activation of the mechanistic target of rapamy-
cin complex 1 (mTORC1) signaling, in which mTORC1 
is a major regulator of cell proliferation, apoptosis, and 
autophagy [29]. In erastin and rsl3 induced iron death, 
glutamine input and metabolism induce lipid ROS pro-
duction, which leads to cell death [30]. miR-137 or the 
inhibitor GPNA inhibits SLC1A5 and thus strongly inhib-
its glutamine catabolism, leading to the death of irono-
philic cells. SLC1A5-mediated glutamine transport plays 
a crucial role in tumor cell metabolism, proliferation, and 
ferroptosis; therefore, inhibiting SLC1A5 and thus block-
ing glutamine transport is one of the approaches to treat 
solid tumors. miR-137 has been reported to be signifi-
cantly downregulated in melanoma [31, 32], glioblastoma 
[33], colorectal cancer [34], and non-small cell lung can-
cer [35] compared to adjacent normal tissues. SLC1A5 is 
a target of miR-137 and is expressed at elevated levels in 
melanoma [36], neuroblastoma [37], and prostate cancer 
[38]. MiR-137 was negatively correlated with SLC1A5, 
suggesting that SLC1A5 is a key target of miR-137, inhib-
iting the growth of cancer cells. In the present study, 
SLC1A5 was found to be highly expressed in STAD tis-
sues compared to normal gastric tissues, while miR-137 
was expressed at low levels. In addition, the prognosis 
of patients with STAD was better with low miR-137 and 

high SLC1A5 expression, probably because low miR-137 
expression attenuated the inhibitory effect on SLC1A5, 
thereby inhibiting the development and progression of 
STAD cells. This idea has not yet been suggested in any 
study.

Glutamine is essential for the immune system for ter-
minally differentiated immune cells, such as neutrophils 
[39], macrophages [39–41], and activated lymphocytes 
[42, 43]. During naive T cell activation, SLC1A5 is 
required for rapid glutamine uptake [44], as it promotes 
cell growth and proliferation in T cell receptor (TCR)-
stimulated mTORC1 activation [45]. SLC1A5 deletion 
can have an impact on T-cell effector functions, with 
impaired differentiation of helper T cells to Th1 and Th17 
subpopulations [44]. Activated lymphocytes strongly uti-
lize glutamine [29, 42, 46–48]. mTORC1 plays an impor-
tant role in metabolic reprogramming, which is essential 
for NK and T cell effector functions [49–51]. And upreg-
ulation of the glutamine transporter SLC1A5 is key to 
mTORC1 activity [44, 52–54]. c-Myc is essential for NK 
cell metabolism and T cell activation [55, 56]. In T cells, 
c-Myc expression is required for the activation of induced 
glutamine hydrolysis, and glutamine uptake is critical for 
T cell proliferation [57]. Glutamine uptake via SLC1A5 is 
required for c- Myc induction in cytokine-stimulated NK 
cells [55]. Amino acid translocation upregulates c-Myc, 
while positive feedback stimulates SLC1A5 expression, 
maintains mTORC1 activity and supports c-Myc expres-
sion. Nevertheless, studies on the role of SLC1A5 in 
immune cells, which play a key role in suppressing tumor 
growth, are only beginning. T helper follicular cells from 
CD4+ T-cell subsets help B cells and induce antibody 
responses, thus playing an important role in anti-tumor 
immunity [58]. In the present study, we found that the 
percentage of T helper follicle cells in the high SLC1A5 
expression group was higher than that in the low-expres-
sion group, and the expression of SLC1A5 was positively 
correlated with the content of T helper follicle cells. 
Monocytes are major regulators of tumor development 
and progression [59] and are also an important source 
of long-term tumor-associated macrophages (TAMs) 
and dendritic cells (DCs) that form the tumor microen-
vironment [60]. Our results showed a higher percentage 
of monocytes in the SLC1A5 low-expression group and a 
negative correlation between the two. This explains why 
the SLC1A5 high expression group has a better progno-
sis: one of the reasons may be that the infiltration of these 
two immune cells plays a key role.

Glutamine addiction has been reported to be one of 
the targets for cancer treatment by inhibiting glutami-
nolysis or enzymes in the glutamine transporter [61, 62]. 
The current research on SLC1A5 in gastric cancer treat-
ment is also focused on glutamine metabolism. Targeting 
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SLC1A5 in gastric cancer produces antitumor effects by 
inhibiting the mTOR/p-70S6K1 signaling pathway [63], 
glutamine mediates gastric cancer growth, and the effi-
cacy of targeted glutamine therapy is dependent on the 
different expression patterns of the glutamine transporter 
ASCT2 and glutamate synthetase (GS) in specific gas-
tric cancer groups [64], the new monoclonal antibody 
KM8094 has a very high therapeutic potential in target-
ing the neutral amino acid transporter ASCT2 [65, 66]. 
However, there are no studies that have explored the rela-
tionship between the ferroptosis-related gene SLC1A5 
and immunotherapy. Immunotherapy, a therapeutic 
approach that boosts the immune system with drugs to 
fight tumors, currently plays a key role in cancer treat-
ment [67]. Among them, immune checkpoint inhibi-
tors (ICIs) targeting cytotoxic T-lymphocyte antigen-4 
(CTLA-4) and programmed cell death protein-1 (PD-1) 
are promising and may play an important role in immu-
notherapy [68]. PD-1 is a member of the CD28 family 
and is essentially a suppressor receptor expressed mainly 
on activated T cells, B cells, macrophages, regulatory T 
cells (treg), and NK cells [69, 70]. It binds to two kinds of 
ligands, PD-L1 and PD-L2, which are mainly expressed in 
T cells, B cells, macrophages, and dendritic cells [71–73]. 
Tumors cause excessive activation of the PD-1/L1 sign-
aling pathway, which in turn reduces T-cell activation 
and antigen-specific T-cell immune response, and finally 
bypasses immune surveillance, thus promoting tumor 
growth [69, 74, 75]. In the present study, we found that 
the expression of SLC1A5 in the TCGA-STAD cohort 
was positively correlated with the expression of PD-1 
(PDCD1), but negatively correlated with the expression 
of PD-L1 (CD-274). Therefore, the better prognosis of 
patients with high SLC1A5 expression may be related 
to the reduced expression of PD-L1, resulting in fewer 
PD-1-binding ligands and thus a weaker immune escape 
effect. In contrast, immunotherapy targeting PD-1 may 
improve the prognosis of patients with STAD. We also 
confirmed the predictive value of SLC1A5 for immu-
notherapy response in an anti-PD-1 immunotherapy 
cohort. There was a significant difference in SLC1A5 
expression between responders and non-responders to 
anti-PD-1 therapy. Although there is no published cohort 
of immunotherapy patients with STAD, the above results 
are still suggestive of SLC1A5 as a predictive marker in 
immunotherapy of STAD patients.

Our study is a prediction generated by preliminary 
data analysis and hypothesis testing, and therefore has 
some limitations. First, the TCGA-STAD cohort had 
limited number of patients and a larger sample size is 
required to obtain more reliable data. Second, the tar-
geted inhibitory effect of miR-137 on SLC1A5 in STAD 
needs to be experimentally validated. Third, the role 

of SLC1A5 in regulating immune cell infiltration and 
immune checkpoints needs to be further investigated.

Conclusion
In the present study, elevated SLC1A5 was found 
to be an independent prognostic biomarker in 
patients with STAD. Reduced inhibition of SLC1A5 
by upstream miR-137 led to increased its expression 
and a better prognosis. Moreover, SLC1A5 may play 
an important role in the microenvironment of STAD 
by regulating tumor infiltration by immune cells. In 
addition, SLC1A5-induced high expression of PD-1 
in STAD may improve the therapeutic response of 
patients treated with ICIs. Thus, our findings provide 
new insights to assist clinicians in developing appropri-
ate therapeutic strategies and improving the long-term 
prognosis of STAD.
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