Skip to main content

Table 1 The role of quercetin in various cancers mediated by signalling pathways—evidence from preclinical studies

From: Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets

Signalling pathways

Subfamily involved in the signalling pathway

Cancer types

Quercetin

IC50

Target genes

Cell line (s)/in vitro model

Possible mechanisms

Refs.

MAPK (family) signalling

p38

Oral cancer

100 µM

MDR1, ABCG2 Hsp27

SCC25

↓ Hsp70 expression

changes in EMT

↑apoptosis in drug-resistant cells

[64]

p38

ERK

JNK

Hepatocellular carcinoma

400 µM

HepG2 Hep3B

↓growth, ↓proliferation

↑apoptosis

cell cycle arrest in the G1 phase

[65]

p38

JNK

ERK

Gastric cancer

267 μM

TRPM7

AGS

↓growth, ↓proliferation,

TRPM7 channel inhibition

↑apoptosis

[66]

p38

ERK1/2

JNK

Choriocarcinoma

20, 50, 100 μM

JAR JEG3

↓proliferation

cell cycle arrest in the sub-G1 phase

↑ROS, ↑MMP

[67]

p38

JNK

Gastric cancer

20 and 40 µM

Bcl-2

Bcl-xl

Bax

SGC-7901

MGC-803

↓cell viability

↑apoptosis

cell cycle arrest in the G2/M phase

↑ROS

[68]

 

p38

JNK

Retinoblastoma

0, 25, 75, and 100 µM

p27

p21

Caspase-3

Caspase -9

Y79

↓cell viability

cell cycle arrest in the G1 phase

↑apoptosis

[69]

ERK

Esophageal cancer

0–10 µM

AP-1

NF-κB, p65 COX-2

ESCC

↓growth

↓proliferation

↓inflammation

↓pre-neoplastic lesion formation by NMBA

[70]

ERK1/2

Prostate cancer

40 μM

p38, ABCG2, NF-κB

PC3, LNCaP ARPE-19

↓ cell viability

↑apoptosis

cell cycle arrest in G1 phase ↓cell migration

[71]

ELK1 MEKK/MAP3K5

Cervical cancer

25, 50, 100 µM

Caspases, pro-apoptotic genes

HeLa

↓growth

↓proliferation

↓colony formation

↑apoptosis

↑cell DNA damage

cell cycle arrest in G2/M phase

↓cell migration

[72]

p38

JNK

ERK1/2

Melanoma

0–200 µM

Apoptotic genes

A375SM A375P

↓cell viability

↓growth

↓proliferation

↑morphological and histological changes

↑apoptosis

[73]

p38

JNK

ERK1/2

Canine osteosarcoma

0–100 µM

D‐17, DSN

↓proliferation,

↑ MMP, ↑ROS

↓free cytosolic calcium

cell cycle arrest in G1 phase

[74]

JAK/STAT (family)

STAT3

Gastric cancer

40 μmol/L

Leptin receptor gene

MGC-803

↑apoptosis

↑necrosis

cell cycle arrest in G2/M phase

[53]

JAK1/STAT3

Glioblastoma

0–100 µM

IL-6

cyclin D1, MMP2

U87,  T98G

↓ cancer cells growth

↓ IL-6

↓Rb phosphorylation,

↓cyclin D1

↓MMP2

↓cell migration

[54]

STAT1/3

JAK1/2

Cholangiocarcinoma

20–100 µM

iNOS, ICAM-1

KKU100, KKU-M139 KKU-M213

↓STAT1/3 phosphorylation

↓iNOS, ↓ICAM-1

↓growth, ↓migration

↓activity

[55]

STAT3

Non-small-cell Lung-cancer

10–100 μM

NF-κB, Bcl2

Bax

A549 H460

↓growth

↑apoptosis

cell cycle arrest in sub-G1 phase

[56]

JAK1/STAT3

Breast cancer

0–100 µM

HER-2, MMP-9

BT474

↓ growth and ↓clonogenic

↑apoptosis

↑STAT3

[57]

JAK2

STAT3/5

Cervical cancer

-

Cyclin D1 Apoptotic proteins

Caski, Hela Siha

↓ cancer cells proliferation,

↓ migration,

↓invasion,

↑apoptosis, ↑autophagy, ↓xenograft growth and development,

cell cycle arrest in G2/M phase

[58]

JAK2/STAT3

Hepatocellular carcinoma

80, 120 μmol/L

LM3

↓tumor cell growth

↓viability

↓migration, ↓invasion ↑autophagy

cell cycle arrest in S and G2/M phases

[59]

Wnt/β-catenin

β-catenin/Tcf

Teratocarcinoma

70 µM

β-catenin, SOX2, Nanog, Oct4

NT2/D1

↓β-catenin nuclear translocation, ↓transcription factors expression

[37]

DKK1, 2 and 3

Breast cancer

10, 20, 40 µM

Apoptotic genes

4T1

↑apoptosis

↓ cancer cell viability

[38]

β-catenin/Tcf

Colon cancer

40, 80 µmol/L

Cyclin D1, survivin

SW480

↑Wnt/β-catenin

↓ cyclin D1, ↓survivin

[39]

β-catenin/

TCF/LEF

Colon cancer

10–75 µM

GSK3 α ,GSK3 β

HT29

the level of β-catenin in HT29 cells remained unaffected

[40]

PI3K/Akt

p-Akt

Breast cancer

25 µM

PTEN

HCC1937

↓Akt/PKB phosphorylation

↓cell proliferation

[43]

p-Akt

PI3K

Leukaemia

150 µM

Bcl-2,

Bax, caspase-2

caspase -3 poly (ADP-ribose) polymerase cleavage

HL-60

cell cycle arrest in G (0)/G (1) phase

↑apoptosis

[44]

p-Akt

Gastric cancer stem cell

20, 100 µM

Caspase-3 Caspase-9,

Bcl2, Cyt-c

MGC803

↑ apoptosis via mitochondrial-dependent pathway and mediated PI3K-Akt signalling pathway

[45]

PI3K

p-Akt

Cervical cancer

25, 50, 100 µM

Bcl-2, Bax

HeLa

cell cycle arrest in G (0)/G (1) phase,

anti-proliferative

↑apoptosis

[42]