Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.
Article
PubMed
Google Scholar
Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–50.
Article
PubMed
Google Scholar
Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, Lin C, Leach C, Cannady RS, Cho H, Scoppa S, Hachey M, Kirch R, Jemal A, Ward E. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):220–41.
Article
PubMed
Google Scholar
National Cancer Institute. What you need to know about leukemia (pamphlet). U.S. Department of Health and Human Service; 2013. NIH Publication No. 13-3775.
Hoffbrand AV, Catovsky D, Tuddenham EGD, Green AR, editors. Postgraduate haematology. 6th ed. Hoboken: Wiley; 2011.
Google Scholar
American Cancer Society. Cancer facts & figures 2014. Atlanta: American Cancer Society; 2014.
Google Scholar
Patel AK, Zhang M, Huang X. Leukemia therapy: mechanisms of drug resistance and investigational strategies. Br J Med Med Res. 2014;4(24):4134–53.
Article
Google Scholar
Ntziachristos P, Mullenders J, Trimarchi T, Aifantis I. Mechanisms of epigenetic regulation of leukemia onset and progression. Adv Immunol. 2013. doi:10.1016/B978-0-12-410524-9.00001-3.
PubMed
PubMed Central
Google Scholar
Sawyers CL. Chronic myeloid leukemia. N Engl J Med. 1999;340(17):1330–40.
Article
CAS
PubMed
Google Scholar
Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341(3):164–72.
Article
CAS
PubMed
Google Scholar
Goldman JM, Melo JV. Chronic myeloid leukemia—advances in biology and new approaches to treatment. N Engl J Med. 2003;349(15):1451–64.
Article
CAS
PubMed
Google Scholar
Hehlmann R, Hochhaus A, Baccarani M. Chronic myeloid leukaemia. Lancet. 2007;370:342–50.
Article
CAS
PubMed
Google Scholar
Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. SEER cancer statistics review, 1975–2013, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site, April 2016.
Bessman JD, Williams LJ, Gilmer PR. Platelet size in health and hematologic disease. Am J Clin Pathol. 1982;78(2):150–3.
Article
CAS
PubMed
Google Scholar
Quintás-Cardama A, Han X, Kantarjian H, Cortes J. Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. Blood. 2009;114(2):261–3.
Article
PubMed
PubMed Central
Google Scholar
Jain S, Harris J, Ware J. Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol. 2010;30(12):2362–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trikha M, Zhou Z, Timar J, Raso E, Kennel M, Emmell E, et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res. 2002;62(10):2824–33.
CAS
PubMed
Google Scholar
Jackson SP, Schoenwaelder SM. Procoagulant platelets: are they necrotic? Blood. 2010;116(12):2011–8.
Article
CAS
PubMed
Google Scholar
Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. Lancet Oncol. 2002;3(7):425–30.
Article
CAS
PubMed
Google Scholar
Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie. 2014;34(1):54–62.
Article
CAS
PubMed
Google Scholar
Gay LJ, Felding-Habermann B. Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell. 2011;20(5):553–4.
Article
CAS
PubMed
Google Scholar
Sharma D, Brummel-Ziedins KE, Bouchard BA, Holmes CE. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014;229(8):1005–15.
Article
CAS
PubMed
Google Scholar
Troxler M, Dickinson K, Homer-Vanniasinkam S. Platelet function and antiplatelet therapy. Br J Surg. 2007;94(6):674–82.
Article
CAS
PubMed
Google Scholar
Erpenbeck L, Schön MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood. 2010;115(17):3427–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bambace NM, Holmes CE. The platelet contribution to cancer progression. J Thromb Haemost. 2011;9(2):237–49.
Article
CAS
PubMed
Google Scholar
Whiteheart SW. Platelet granules: surprise packages. Blood. 2011;118(5):1190–1.
Article
CAS
PubMed
Google Scholar
Blair P, Flaumenhaft R. Platelet α-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
King SM, Reed GL. Development of platelet secretory granules. In: Seminars in cell & developmental biology. Cambridge: Academic Press; 2002.
McNicol A, Israels SJ. Platelet dense granules: structure, function and implications for haemostasis. Thromb Res. 1999;95(1):1–18.
Article
CAS
PubMed
Google Scholar
Sabrkhany S, Griffioen AW, Oude Egbrink MG. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta. 2011;1815(2):189–96.
CAS
PubMed
Google Scholar
Goubran HA, Burnouf T, Radosevic M, El-Ekiaby M. The platelet–cancer loop. Eur J Intern Med. 2013;24(5):393–400.
Article
CAS
PubMed
Google Scholar
Lefrançais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, Thornton EE, Headley MB, David T, Coughlin SR, Krummel MF. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.
Article
PubMed
Google Scholar
Schmidt T, Carmeliet P. Angiogenesis: a target in solid tumors, also in leukemia? ASH Educ Progr B. 2011;1:1–8.
Google Scholar
Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267(16):10931–4.
CAS
PubMed
Google Scholar
Yue TL, Wang X, Louden CS, Gupta S, Pillarisetti K, Gu JL, et al. 2-Methoxyestradiol, an endogenous estrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: possible role for stress-activated protein kinase signaling pathway and Fas expression. Mol Pharmacol. 1997;51(6):951–62.
CAS
PubMed
Google Scholar
Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res. 2001;7(5):1459–65.
CAS
PubMed
Google Scholar
Italiano JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111(3):1227–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sierko E, Wojtukiewicz MZ. Platelets and angiogenesis in malignancy. Semin Thromb Hemost. 2004;30(1):95–108.
Article
CAS
PubMed
Google Scholar
Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002;30(5):450–9.
Article
CAS
PubMed
Google Scholar
Wartiovaara U, Salven P, Mikkola H, Lassila R, Kaukonen J, Joukov V, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost. 1998;80(1):171–5.
CAS
PubMed
Google Scholar
Dunn IF, Heese O, Black PM. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol. 2000;50(1–2):121–37.
Article
CAS
PubMed
Google Scholar
Hall M, Gourley C, McNeish I, Ledermann J, Gore M, Jayson G, et al. Targeted anti-vascular therapies for ovarian cancer: current evidence. Br J Cancer. 2013;108(2):250–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee CC, Liu KJ, Huang TS. Tumor-associated macrophage: its role in tumor angiogenesis. J Cancer Mol. 2006;2(4):135–40.
CAS
Google Scholar
Plake KH, Warnke PC. Vascular endothelial growth factor. J Neurooncol. 1997;35:365–72.
Google Scholar
Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947–70.
Article
CAS
PubMed
Google Scholar
Peterson J, Zurakowski D, Italiano J, Michel L, Connors S, Oenick M, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 2012;15(2):265–73.
Article
CAS
PubMed
Google Scholar
Duque JL, Loughlin KR, Adam RM, Kantoff PW, Zurakowski D, Freeman MR. Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology. 1999;54(3):523–7.
Article
CAS
PubMed
Google Scholar
Bierie B, Moses HL. Transforming growth factor beta (TGF-ß) and inflammation in cancer. Cytokine Growth Factor Rev. 2010;21:49–59.
Article
CAS
PubMed
Google Scholar
Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22(10):1276–312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon SO, Park SJ, Yun CH, Chung AS. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol. 2003;36(1):128–37.
CAS
PubMed
Google Scholar
Tiwari M. Apoptosis, angiogenesis and cancer therapies. J Cancer Res Ther. 2012;1(1):3.
Article
Google Scholar
Mukhopadhyay T, Roth JA. Induction of apoptosis in human lung cancer cells after wild-type p53 activation by methoxyestradiol. Oncogene. 1997;14:379–84.
Article
CAS
PubMed
Google Scholar
Pasquier E, Kavallaris M. Microtubules: a dynamic target in cancer therapy. IUBMB Life. 2008;60(3):165–70.
Article
CAS
PubMed
Google Scholar
Dobos J, Timar J, Bocsi J, Burian Z, Nagy K, Barna G, et al. In vitro and In vivo antitumor effect of 2-methoxyestradiol on human melanoma. Int J Cancer. 2004;112:771–6.
Article
CAS
PubMed
Google Scholar
Vorster C, Joubert A. In vitro effects of 2-methoxyestradiol-bis-sulphamate on cell growth, morphology and cell cycle dynamics in the MCF-7 breast adenocarcinoma cell line. Biocell. 2010;34(2):71–9.
CAS
PubMed
Google Scholar
Choi HJ, Zhu BT. Critical role of cyclin B1/Cdc2 up-regulation in the induction of mitotic prometaphase arrest in human breast cancer cells treated with 2-methoxyestradiol. Biochim Biophys Acta. 2012;1823:1306–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stander XX, Stander BA, Joubert AM. In vitro effects of an in silico modelled 17β-estradiol derivative in combination with dichloroacetic acid on MCF-7 and MCF-12A cells. Cell Prolif. 2011;44:567–81.
Article
CAS
PubMed
Google Scholar
Du B, Zhao Z, Sun H, Ma S, Jin J, Zhang Z. Effects of 2-methoxyestradiol on proliferation, apoptosis and gene expression of cyclin B1 and c-Myc in esophageal carcinoma EC9706 cells. Cell Biochem Funct. 2012;30:158–65.
Article
CAS
PubMed
Google Scholar
Stander BA, Joubert F, Joubert A. Docking, synthesis, and in vitro evaluation of antimitotic estrone analogs. Chem Biol Drug Des. 2011;77(3):173–81.
Article
CAS
PubMed
Google Scholar
Rendu F, Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets. 2001;12(5):261–73.
Article
CAS
PubMed
Google Scholar
Li J, Xia Y, Bertino AM, Coburn JP, Kuter DJ. The mechanism of apoptosis in human platelets during storage. Transfusion. 2000;40(11):1320–9.
Article
CAS
PubMed
Google Scholar
Reed GL. Platelet secretory mechanisms. In: Seminars in thrombosis and hemostasis. New York: Thieme Medical Publishers, Inc.; 2004.
Zharikov S, Shiva S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem Soc Trans. 2013;41(1):118–23.
Article
CAS
PubMed
Google Scholar
Leytin V, Freedman J. Platelet apoptosis in stored platelet concentrates and other models. Transfus Sci. 2003;28(3):285–95.
Google Scholar
Bertino AM, Qi XQ, Li J, Xia Y, Kuter DJ. Apoptotic markers are increased in platelets stored at 37 C. Transfusion. 2003;43(7):857–66.
Article
CAS
PubMed
Google Scholar
Zhao L, Zhang W, Chen M, Zhang J, Zhang M, Dai K. Aspirin Induces platelet apoptosis. Platelets. 2013;24(8):637–42.
Article
CAS
PubMed
Google Scholar
Kile BT. The role of the intrinsic apoptosis pathway in platelet life and death. J Thromb Haemost. 2009;7(s1):214–7.
Article
CAS
PubMed
Google Scholar
Leytin V. Apoptosis in the anucleate platelet. Blood Rev. 2012;26(2):51–63.
Article
CAS
PubMed
Google Scholar
Schrijvers DM, De Meyer GR, Herman AG, Martinet W. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res. 2007;73(3):470–80.
Article
CAS
PubMed
Google Scholar
Hait WN, Jin S, Yang JM. A matter of life or death (or both): understanding autophagy in cancer. Clin Cancer Res. 2006;12(7):1961–5.
Article
CAS
PubMed
Google Scholar
Feng W, Chang C, Luo D, Su H, Yu S, Hua W, Chen Z, Hu H, Liu W. Dissection of autophagy in human platelets. Autophagy. 2014;10(4):76–85.
Article
Google Scholar
Gottlieb RA. Autophagy in health and disease. Cambridge: Academic Press; 2012.
Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, Baccarani M, Deininger MW, Cervantes F, Fujihara S, Ortmann CE. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27.
Article
CAS
PubMed
Google Scholar
Hoffmann VS, Hasford J, Deininger M, Cortes J, Baccarani M, Hehlmann R. Systematic review and meta-analysis of standard-dose imatinib vs. high-dose imatinib and second generation tyrosine kinase inhibitors for chronic myeloid leukemia. J Cancer Res Clin Oncol. 2017:1-8.
Chereda B, Melo JV. The Biology and Pathogenesis of Chronic Myeloid Leukemia. In: Chronic Myeloid Leukemia. Springer International Publishing. 2016:17–39.
Steegmann JL, Baccarani M, Breccia M, Casado LF, García-Gutiérrez V, Hochhaus A, Kim DW, Kim TD, Khoury HJ, Le Coutre P, Mayer J. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. 2016;30:1648–71.
Article
CAS
PubMed
PubMed Central
Google Scholar