Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–50.
Article
PubMed
Google Scholar
Sellers TA. Genetic factors in the pathogenesis of breast cancer: their role and relative importance. J Nutr. 1997;127(5):929S–32S.
Article
CAS
PubMed
Google Scholar
Oskouee MA, Shahmahmoudi S, Nategh R, Esmaeili H-A, Safaeyan F, Moghaddam MZ. Three common TP53 polymorphisms and the risk of breast cancer among groups of Iranian women. Arch Breast Cancer. 2015;2(4):114–9.
Google Scholar
Antoniou A, Easton D. Models of genetic susceptibility to breast cancer. Oncogene. 2006;25(43):5898–905.
Article
CAS
PubMed
Google Scholar
King M-C, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.
Article
CAS
PubMed
Google Scholar
Thompson D, Easton D. The genetic epidemiology of breast cancer genes. J Mammary Gland Biol Neoplasia. 2004;9(3):221–36.
Article
PubMed
Google Scholar
Goodfellow PN, Banting G, Wiles MV, Tunnacliffe A, Parkar M, Solomon E, et al. The gene, MIC4, which controls expression of the antigen defined by monoclonal antibody F10. 44.2, is on human chromosome 11. Eur J Immunol. 1982;12(8):659–63.
Article
CAS
PubMed
Google Scholar
Bell MV, Cowper AE, Lefranc M-P, Bell JI, Screaton GR. Influence of intron length on alternative splicing of CD44. Mol Cell Biol. 1998;18(10):5930–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci. 1992;89(24):12160–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourguignon L, Zhu D, Zhu H. CD44 isoform–cytoskeleton interaction in oncogenic signaling and tumor progression. Front Biosci. 1998;1998(3):d637–49.
Article
Google Scholar
Chen D, McKallip RJ, Zeytun A, Do Y, Lombard C, Robertson JL, et al. CD44-deficient mice exhibit enhanced hepatitis after concanavalin A injection: evidence for involvement of CD44 in activation-induced cell death. J Immunol. 2001;166(10):5889–97.
Article
CAS
PubMed
Google Scholar
McKallip RJ, Fisher M, Do Y, Szakal AK, Gunthert U, Nagarkatti PS, et al. Targeted deletion of CD44v7 exon leads to decreased endothelial cell injury but not tumor cell killing mediated by interleukin-2-activated cytolytic lymphocytes. J Biol Chem. 2003;278(44):43818–30.
Article
CAS
PubMed
Google Scholar
McKallip RJ, Fisher M, Gunthert U, Szakal AK, Nagarkatti PS, Nagarkatti M. Role of CD44 and its v7 isoform in staphylococcal enterotoxin B-induced toxic shock: CD44 deficiency on hepatic mononuclear cells leads to reduced activation-induced apoptosis that results in increased liver damage. Infect Immun. 2005;73(1):50–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rafi A, Nagarkatti M, Nagarkatti PS. Hyaluronate–CD44 interactions can induce murine B-cell activation. Blood. 1997;89(8):2901–8.
CAS
PubMed
Google Scholar
Sales KM, Winslet MC, Seifalian AM. Stem cells and cancer: an overview. Stem Cell Rev. 2007;3(4):249–55.
Article
CAS
PubMed
Google Scholar
Bankfalvi A, Terpe HJ, Breukelmann D, Bier B, Rempe D, Pschadka G, et al. Gains and losses of CD44 expression during breast carcinogenesis and tumour progression. Histopathology. 1998;33(2):107–16.
Article
CAS
PubMed
Google Scholar
Kaufmann M, von Minckwitz G, Heider K, Ponta H, Herrlich P, Sinn H. CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet. 1995;345(8950):615–9.
Article
CAS
PubMed
Google Scholar
Dall P, Heider KH, Sinn HP, Skroch-Angel P, Adolf G, Kaufmann M, et al. Comparison of immunohistochemistry and RT-PCR for detection of CD44v-expression, a new prognostic factor in human breast cancer. Int J Cancer. 1995;60(4):471–7.
Article
CAS
PubMed
Google Scholar
Srebrow A, Kornblihtt AR. The connection between splicing and cancer. J Cell Sci. 2006;119(13):2635–41.
Article
CAS
PubMed
Google Scholar
Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3(4):285–98.
Article
CAS
PubMed
Google Scholar
Stickeler E, Kittrell F, Medina D, Berget SM. Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene. 1999;18(24):3574–82.
Article
CAS
PubMed
Google Scholar
Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haußmann I, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991;65(1):13–24.
Article
PubMed
Google Scholar
Telen MJ, Udani M, Washington MK, Levesque MC, Lloyd E, Rao N. A blood group-related polymorphism of CD44 abolishes a hyaluronan-binding consensus sequence without preventing hyaluronan binding. J Biol Chem. 1996;271(12):7147–53.
Article
CAS
PubMed
Google Scholar
Zhou J, Nagarkatti PS, Zhong Y, Creek K, Zhang J, Nagarkatti M. Unique SNP in CD44 intron 1 and its role in breast cancer development. Anticancer Res. 2010;30(4):1263–72.
PubMed
PubMed Central
Google Scholar
DNA Sequence Assembler v4. Heracle BioSoft; 2013. http://www.DnaBaser.com.
Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31(13):3568–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(9):e67.
Article
PubMed
PubMed Central
Google Scholar
Catterall JBGM, Turner GA. Hyaluronic acid, cell adhesion and metastasis. Cancer J. 1995;8:320–30.
CAS
Google Scholar
Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 1993;7(13):1233–41.
Article
CAS
PubMed
Google Scholar
Kosaki R, Watanabe K, Yamaguchi Y. Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res. 1999;59(5):1141–5.
CAS
PubMed
Google Scholar
Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function and association with the malignant process. Adv Cancer Res. 1997;71:241–319.
Article
CAS
PubMed
Google Scholar
So JY, Lee HJ, Smolarek AK, Paul S, Wang C-X, Maehr H, et al. A novel Gemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer. Mol Pharmacol. 2011;79(3):360–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, Deng J, Zhu X, Zheng J, You Y, Li N, et al. CD44 rs13347 C > T polymorphism predicts breast cancer risk and prognosis in Chinese populations. Breast Cancer Res. 2012;14(4):R105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Wu C. Association of CD44 polymorphisms with chemosensitivity to anthracycline-based chemotherapy in breast cancer. J Jilin Univ. 2012;38:110–4.
CAS
Google Scholar
Tulsyan S, Agarwal G, Lal P, Agrawal S, Mittal RD, Mittal B. CD44 gene polymorphisms in breast cancer risk and prognosis: a study in North Indian population. PLoS ONE. 2013;8(8):e71073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Nagarkatti PS, Zhong Y, Zhang J, Nagarkatti M. Implications of single nucleotide polymorphisms in CD44 exon 2 in risk for breast cancer. Eur J Cancer Prev Off J Eur Cancer Prev Org (ECP). 2011;20(5):396.
Article
CAS
Google Scholar
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.
Article
PubMed
Google Scholar
Krawczak M, Reiss J, Cooper DN. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992;90(1–2):41–54.
CAS
PubMed
Google Scholar
Götte M, Yip GW. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res. 2006;66(21):10233–7.
Article
PubMed
Google Scholar
Miné M, Brivet M, Touati G, Grabowski P, Abitbol M, Marsac C. Splicing error in E1α pyruvate dehydrogenase mRNA caused by novel intronic mutation responsible for lactic acidosis and mental retardation. J Biol Chem. 2003;278(14):11768–72.
Article
PubMed
Google Scholar