World Health Organization. Novel Coronavirus (2019-nCoV) situation reports, released by the World Health Organization (WHO); 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed 2 May 2021.
Moghadas SM, Shoukat A, Fitzpatrick MC, Wells CR, Sah P, Pandey A, et al. Projecting hospital utilization during the COVID-19 outbreaks in the United States. Proc Natl Acad Sci USA. 2020;117(16):9122–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soltany A, Hamouda M, Ghzawi A, Sharaqi A, Negida A, Soliman S, et al. A scoping review of the impact of COVID-19 pandemic on surgical practice. 2020. Ann Med Surg (Lond). 2020;57:24–36.
Article
Google Scholar
European Centre for Disease Prevention and Control. COVID-19 vaccination and prioritisation strategies in the EU/EEA; 2020. https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-vaccination-and-prioritisation-strategies.pdf. Accessed 20 June 2021.
Yang J, Zheng W, Shi H, Yan X, Dong K, You Q, et al. Who should be prioritized for COVID-19 vaccination in China? A descriptive study. BMC Med. 2021;19(1):45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng SC, Herbert Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020;69(6):973–94.
Article
CAS
PubMed
Google Scholar
Tsatsakis A, Calina D, Falzone L, Petrakis D, Mitrut R, Siokas V, et al. SARS-CoV-2 pathophysiology and its clinical implications: an integrative overview of the pharmacotherapeutic management of COVID-19. Food Chem Toxicol. 2020;146:111769.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao C, Chen M, He L, Xie J, Chen XJCC. Clinical features and outcomes of COVID-19 patients with gastrointestinal symptoms. Crit Care. 2020;24(1):340.
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Cao Y, Wang S, Cai K, Xu K. COVID-19 and gastrointestinal symptoms. Br J Surg. 2020;107(10):e382–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang N, Gong Y, Meng F, Bi Y, Yang P, Wang FJM. Virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. Sci Chia Life Sci. 2021;64(3):486–8.
Article
CAS
Google Scholar
Ye Q, Wang B, Zhang T, Xu J, Shang S. The mechanism and treatment of gastrointestinal symptoms in patients with COVID-19. Am J Physiol Gastrointest Liver Physiol. 2020;319(2):G245–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hindson J. COVID-19: faecal-oral transmission? Nat Rev Gastroenterol Hepatol. 2020;17(5):259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang P, Gu H, Zhao Z, Wang W, Cao B, Lai C, et al. Angiotensin-converting enzyme 2 [ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci Rep. 2014;4:7027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han DP, Penn-Nicholson A, Cho MWJV. Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology. 2006;350(1):15–25.
Article
CAS
PubMed
Google Scholar
Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K, Sata T, et al. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc Natl Acad Sci USA. 2008;105(22):7809–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagliaro P, Penna C. ACE/ACE2 ratio: a key also in 2019 coronavirus disease (Covid-19)? Front Med (Lausanne). 2020;7:335.
Article
Google Scholar
Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503(7477):535–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80.e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taneera J, El-Huneidi W, Hamad M, Mohammed AK, Elaraby E, Hachim MY. Expression profile of SARS-CoV-2 host receptors in human pancreatic islets revealed upregulation of ACE2 in diabetic donors. Biol. 2020;9(8):215.
Article
CAS
Google Scholar
Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol. 2019;93:e01815–8.
CAS
PubMed
PubMed Central
Google Scholar
Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122–34.
Article
PubMed
PubMed Central
Google Scholar
Stopsack KH, Mucci LA, Antonarakis ES, Nelson PS, Kantoff PW. TMPRSS2 and COVID-19: serendipity or opportunity for intervention? Cancer Discov. 2020;10:779–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. Digestive system is a potential route of COVID-19: an analysis of single-cell co-expression pattern of key proteins in viral entry process. Gut. 2020;69:973–4.
Article
CAS
Google Scholar
Cegolon L, Pichierri J, Mastrangelo G, Cinquetti S, Sotgiu G, Bellizzi S, Pichierri G. Hypothesis to explain the severe form of COVID-19 in Northern Italy. BMJ Glob Health. 2020;5(6):e002564.
Article
PubMed
PubMed Central
Google Scholar
Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury”. Biomed Pharmacother. 2021;136:111193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellavite PRenin-Angiotensin, System. SARS-CoV-2 and hypotheses about adverse effects following vaccination. EC Pharmacol Toxicol. 2021;9(4)():01–10.
Google Scholar
Wicik Z, Eyileten C, Jakubik D, Simões SN, Martins DC, Pavão R, et al. ACE2 interaction networks in COVID-19: a physiological framework for prediction of outcome in patients with cardiovascular risk factors. J Clin Med. 2020;9(11):3743.
Article
CAS
PubMed Central
Google Scholar
Werion A, Belkhir L, Perrot M, Schmit G, Aydin S, Chen Z, et al. SARS-CoV-2 causes a specific dysfunction of the kidney proximal tubule. Kidney Int. 2020;98(5):1296–307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 infectivity and neurological targets in the brain. Cell Mol Neurobiol. 2020. https://doi.org/10.1007/s10571-020-00947-7.
Article
PubMed
PubMed Central
Google Scholar
Sun M, Yang J, Sun Y, Su GH. Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia. He He Hu Xi Za Zhi. 2020;43(3):219–22.
CAS
Google Scholar
Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020;24(1):422.
Article
PubMed
PubMed Central
Google Scholar
Khelfaoui H, Harkati D, Saleh BA. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J Biomol Struct Dyn. 2020. https://doi.org/10.1080/07391102.2020.1803967.
Article
PubMed
PubMed Central
Google Scholar
Singh H, Choudhari R, Nema V, Khan AA. ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease. Microb Pathog. 2021;150:104621.
Article
CAS
PubMed
Google Scholar
Liu C, Wang K, Zhang M, Hu X, Hu T, Liu Y, et al. High expression of ACE2 and TMPRSS2 and clinical characteristics of COVID-19 in colorectal cancer patients. NPJ Precis Oncol. 2021;5(1):1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niu X, Zhu Z, Shao E, Bao J. ACE2 Is a prognostic biomarker and associated with immune infiltration in kidney renal clear cell carcinoma: implication for COVID-19. J Oncol. 2021. https://doi.org/10.1155/2021/8847307.
Article
PubMed
PubMed Central
Google Scholar
Wang XS. Angiotensin-converting enzyme 2 connects COVID-19 with cancer and cancer immunotherapy. World J Gastrointest Oncol. 2021;13(3):157–60.
Article
PubMed
PubMed Central
Google Scholar
Sanguedolce F, Cormio A, Brunelli M, D’Amuri A, Carrieri G, Bufo P, et al. Urine TMPRSS2: ERG fusion transcript as a biomarker for prostate cancer: literature review. Clin Genitoriurin Cancer. 2016;14(2):117–21.
Article
Google Scholar
Van Dam PA, Huizing M, Mestach G, Dierckxsens S, Tjalma W, Trinh XB, et al. SARS-CoV-2 and cancer: are they really partners in crime? Cancer Treat Rev. 2020;89:102068.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peng L, Zagorac S, Stebbing J. Managing patients with cancer in the COVID-19 era. Eur J Cancer. 2020;132:5–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Li H, Hu S, Zhou Y. ACE2 correlated with immune infiltration serves as a prognostic biomarker in endometrial carcinoma and renal papillary cell carcinoma: implication for COVID-19. Aging. 2020;12(8):6518–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang W, Li L, Zhang K, Ma K, Xie H, Gong Y, et al. ACE2 correlated with immune infiltration serves as a novel prognostic biomarker in clear cell renal cell carcinoma: implication for COVID-19. Int J Biol Sci. 2021;17:20–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deshayes F, Nahmias C. Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab. 2005;16(7):293–9.
Article
CAS
PubMed
Google Scholar
Soto-Pantoja DR, Menon J, Gallagher PE, Tallant EA. Angiotensin-[1–7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor. Mol Ther. 2009;8(6):1676–83.
Article
CAS
Google Scholar
Krishnan B, Smith TL, Dubey P, Zapadka ME, Torti FM, Willingham MC, et al. Angiotensin-(1–7) attenuates metastatic prostate cancer and reduces osteoclastogenesis. Prostate. 2013;73(1):71–82.
Article
CAS
PubMed
Google Scholar
Yu C, Tang W, Wang Y, Shen Q, Wang B, Cai C, et al. Downregulation of ACE2/Ang- [1–7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett. 2016;376(2):268–77.
Article
CAS
PubMed
Google Scholar
Li J, Yang Z-l, Ren X, Zou Q, Yuan Y, Liang L, et al. ACE2 and FZD1 are prognosis markers in squamous cell/adenosquamous carcinoma and adenocarcinoma of gallbladder. J Mol Hist. 2014;45:47–57.
Article
CAS
Google Scholar
Beyazit Y, Purnak T, Suvak B, Kurt M, Sayilir A, Turhan T, et al. Increased ACE in extrahepatic cholangiocarcinoma as a clue for activated RAS in biliary neoplasms. Clin Res Hepatol Gastroenterol. 2011;35(10):644–9.
Article
CAS
PubMed
Google Scholar
Neo JH, Ager EI, Angus PW, Zhu J, Herath CB, Christophi C. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases. BMC Cancer. 2010;10:134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Neo JH, Malcontenti-Wilson C, Muralidharan V, Christophi C. Effect of ACE inhibitors and angiotensin II receptor antagonists in a mouse model of colorectal cancer liver metastases. J Gastroenterol Hepatol. 2007;22:577–84.
Article
CAS
PubMed
Google Scholar
Sjöberg T, García Rodríguez LA, Lindblad M. Angiotensin-converting enzyme inhibitors and risk of esophageal and gastric cancer: a nested case-control study. Clinical Gastroenterol Hepatol. 2007;5(10):1160-6.e1.
Article
Google Scholar
Wang Q, Li L, Qu T, Li J, Wu L, Li K, et al. High expression of ACE2 and TMPRSS2 at the resection margin makes lung cancer survivors susceptible to SARS-CoV-2 with unfavorable prognosis. Front Oncol. 2021;11:644575.
Article
PubMed
PubMed Central
Google Scholar
Kong Q, Xiang Z, Wu Y, Gu Y, Guo J, Geng F. Analysis of the susceptibility of lung cancer patients to SARS-CoV-2 infection. Mol Cancer. 2020;19(1):80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lucas M, Heinlein C, Kim T, Hernandez, Malik MS, True LD, et al. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 2014;4:1310–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2–ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17(5):443–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swanson TA, Krueger SA, Galoforo S, Thibodeau BJ, Martinez AA, Wilson GD, et al. TMPRSS2/ERG fusion gene expression alters chemo- and radio-responsiveness in cell culture models of androgen independent prostate cancer. Prostate. 2011;71(14):1548–58.
Article
CAS
PubMed
Google Scholar
Deng Q, Rasool RU, Russell RM, Natesan R, Asangani IA. Targeting androgen regulation of TMPRSS2 and ACE2 as a therapeutic strategy to combat COVID-19. iScience. 2021;24(3):102254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montopoli M, Zumerle S, Vettor R, Rugge M, Zorzi A, Catapano MCV, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (n = 4532). Ann Oncol. 2020;31(8):1040–5.
Article
CAS
PubMed
Google Scholar
Ravaioli S, Tebaldi M, Fonzi E, Angeli D, Mazza M, Nicolini F, et al. ACE2 and TMPRSS2 potential involvement in genetic susceptibility to SARS-COV-2 in cancer patients. Cell Transp. 2020;29:963689720968749.
Article
Google Scholar
Xu J, Chu M, Zhong F, Tan X, Tang G, Mai J, et al. Digestive symptoms of COVID-19 and expression of ACE2 in digestive tract organs. Cell Death Discov. 2020;6:76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao B, Ni C, Gao R, Wang Y, Yang L, Wei J, et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell. 2020;11(10):771–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gosain R, Abdou Y, Singh A, Rana N, Puzanov I, Ernstoff MSJCOR. COVID-19 and cancer: a comprehensive review. Curr Oncol Rep. 2020;22(5):53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernardi S, Zennaro C, Palmisano S, Velkoska E, Sabato N, Toffoli B, et al. Characterization and significance of ACE2 and Mas receptor in human colon adenocarcinoma. Nin Angiotensin Aldosterone Syst. 2012;13(1):202–9.
Article
CAS
Google Scholar
Chen H, et al. Profiling ACE2 expression in colon tissue of healthy adults and colorectal cancer patients by single-cell transcriptome analysis. MedRxiv. 2020. https://doi.org/10.1101/2020.02.15.20023457.
Article
PubMed
PubMed Central
Google Scholar
Liu YL, Ren J, Yuan JP, Zhang ZJ, Guo WY, Guan Y, et al. Postoperative onset and detection of SARS-CoV-2 in surgically resected specimens from gastrointestinal cancer patients with pre/asymptomatic COVID-19. Ann Surg. 2020;272(6):e321–8.
Article
PubMed
Google Scholar
Capitani N, Codolo G, Vallese F, Minervini G, Grassi A, Cianchi F, et al. The lipoprotein HP1454 of Helicobacter pylori regulates T-cell response by shaping T-cell receptor signalling. Cell Microbiol. 2019;21(5):e13006.
Article
PubMed
CAS
Google Scholar
Suárez-Fariñas M, Tokuyama M, Wei G, Huang R, Livanos A, Jha D, et al. Intestinal inflammation modulates the expression of ACE2 and TMPRSS2 and potentially overlaps with the pathogenesis of SARS-CoV-2-related disease. Gastroenterol. 2021;160(1):287-301.e20.
Article
CAS
Google Scholar
Aron-Wisnewsky J, Prifti E, Belda E, Ichou F, Kayser BD, Dao MC, et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut. 2019;68(1):70–82.
Article
CAS
PubMed
Google Scholar
Wang L, Alammar N, Singh R, Nanavati J, Song Y, Chaudhary R, et al. Gut microbial dysbiosis in the irritable bowel syndrome: a systematic review and meta-analysis of case-control studies. J Acad Nutr Diet. 2020;120(4):565–86.
Article
PubMed
Google Scholar
Lippert K, Kedenko L, Antonielli L, Kedenko I, Gemeier C, Leitner M, et al. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef Microb. 2017;8(4):545–56.
Article
CAS
Google Scholar
Montassier E, Gastinne T, Vangay P, Al-Ghalith G, Bruley des Varannes S, Massart S, et al. Chemotherapy‐driven dysbiosis in the intestinal microbiome. Pharmacol Ther. 2015;42(5):515–28.
CAS
Google Scholar
Le Bastard Q, Ward T, Sidiropoulos D, Hillmann BM, Chun CL, Sadowsky MJ, et al. Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Rep. 2018;8(1):6219.
Google Scholar
Tsuei J, Chau T, Mills D, Wan YJ. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp Biol Med (Maywood). 2014;239(11):1489–504.
Article
CAS
Google Scholar
Viana SD, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities–role of gut microbiota dysbiosis. Ageing Res Rev. 2020;62:101123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costa L, Corre S, Michel V, Le Luel K, Fernandes J, Ziveri J, et al. USF1 defect drives p53 degradation during Helicobacter pylori infection and accelerates gastric carcinogenesis. Gut. 2020;69(9):1582–91.
Article
CAS
PubMed
Google Scholar
Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P, Lucas JM, Nelson PS, Pöhlmann S, Soilleux EJ. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS ONE. 2012;7(4):e35876.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng Z, Zhou J, To KK, Chu H, Li C, Wang D, et al. Identification of TMPRSS2 as a Susceptibility Gene for Severe 2009 Pandemic A(H1N1) Influenza and A(H7N9) Influenza. J Infect Dis. 2015;212(8):1214–21.
Article
CAS
PubMed
Google Scholar
Schönfelder K, Breuckmann K, Elsner C, Dittmer U, Fistera D, Herbstreit F, et al. Transmembrane serine protease 2 polymorphisms and susceptibility to severe acute respiratory syndrome coronavirus type 2 infection: a German case-control study. Front Genet. 2021;12:667231.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khayat AS, de Assumpção PP, Meireles Khayat BC, Thomaz Araújo TM, Batista-Gomes JA, Imbiriba LC, et al. ACE2 polymorphisms as potential players in COVID-19 outcome. PLoS ONE. 2020;15(12):e0243887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosso M, Thanaraj TA, Abu-Farha M, Alanbaei M, Abubaker J, Al-Mulla FJMT-M, et al. The two faces of ACE2: the role of ACE2 receptor and its polymorphisms in hypertension and COVID-19. Mol Ther Methods Clin Dev. 2020;18:321–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devaux CA, Rolain J-M, Raoult D, Immunology. Infection. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Immunol Infect. 2020;53(3):425–35.
CAS
Google Scholar
Delanghe JR, Speeckaert MM, De Buyzere ML. COVID-19 infections are also affected by human ACE1 D/I polymorphism. Clin Chem Lab Med. 2020;58(7):1125–6.
Article
CAS
PubMed
Google Scholar
Singh H, Choudhari R, Nema V, Khan AA. ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease. Microb Pathog. 2021;150:104621.
Article
CAS
PubMed
Google Scholar
Zarouk WA, Hussein IR, Esmaeil NN, Raslan HM, Reheim HAA, Moguib O, et al. Association of angiotensin converting enzyme gene (I/D) polymorphism with hypertension and type 2 diabetes. Bratisl Lek Listy. 2012;113(1):14–8.
CAS
PubMed
Google Scholar
Sarangarajan R, Winn R, Kiebish MA, Bountra C, Granger E, Narain NR. Ethnic prevalence of angiotensin-converting enzyme deletion (D) polymorphism and COVID-19 risk: rationale for use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. J Racial Ethn Health Disparities. 2020;8:1–8.
Google Scholar
Liu S-Y, Sima X, Wang C-H, Gao M. The association between ACE polymorphism and risk of colorectal cancer in a Chinese population. Clin Biochem. 2011;44(14–15):1223–6.
Article
CAS
PubMed
Google Scholar
Rocken C, Lendeckel U, Dierkes J, et al. The number of lymph node metastases in gastric cancer correlates with the angiotensin I-converting enzyme gene insertion/deletion polymorphism. Clin Cancer Res. 2005;11:2526–30.
Article
PubMed
Google Scholar
Goto Y, Ando T, Nishio K, et al. The ACE gene polymorphism is associated with the incidence of gastric cancer among H. pylori seropositive subjects with atrophic gastritis. Asian Pac J Cancer Prev. 2005;6:464–7.
PubMed
Google Scholar
Ebert MP, Lendeckel U, Westphal S, et al. The angiotensin I-converting enzyme gene insertion/deletion polymorphism is linked to early gastric cancer. Cancer Epidemiol Biomark Prev. 2005;14:2987–9.
Article
CAS
Google Scholar
Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJ, Young GP, Kuipers EJ. Colorectal cancer screening: a global overview of existing programmes. Gut. 2015;64(10):1637–49.
Article
PubMed
Google Scholar
Del Vecchio Blanco G, Calabrese E, Biancone L, Monteleone G, Paoluzi OAP. The impact of COVID-19 pandemic in the colorectal cancer prevention. Int J Colorectal Dis. 2020;35:1–4.
Article
Google Scholar
Shaukat A, Church T. Colorectal cancer screening in the USA in the wake of COVID-19. Lancet Gastroenterol Hepatol. 2020;5(8):726–7.
Article
PubMed
PubMed Central
Google Scholar
Rutter MD, Brookes M, Lee TJ, Rogers P, Sharp LJG. Impact of the COVID-19 pandemic on UK endoscopic activity and cancer detection: a National Endoscopy Database Analysis. Gut. 2021;70:537–43.
Article
CAS
PubMed
Google Scholar
Di Fiore F, Bouché O, Lepage C, Sefrioui D, Gangloff A, Schwarz L, et al. COVID-19 epidemic: Proposed alternatives in the management of digestive cancers: a French intergroup clinical point of view [SNFGE, FFCD, GERCOR, UNICANCER, SFCD, SFED, SFRO, SFR). Dig Liver Dis. 2020;52(6):597–603.
Article
PubMed
PubMed Central
CAS
Google Scholar
D’Ovidio V, Lucidi C, Bruno G, Lisi D, Miglioresi L, Bazuro MEJCCC. Impact of COVID-19 pandemic on colorectal cancer screening program. Colorectal Cancer. 2021;20(1):e5-11.
Article
PubMed
Google Scholar
Maringe C, Spicer J, Morris M, Purushotham A, Nolte E, Sullivan R, et al. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: a national, population-based, modelling study. Lancet Oncol. 2020;21(8):1023–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fligor SC, Wang S, Allar BG, Tsikis ST, Ore AS, Whitlock AE, et al. Gastrointestinal malignancies and the COVID-19 pandemic: evidence-based triage to surgery. Gastrointest Surg. 2020;24(11):2698–9.
Article
Google Scholar