Parkin D, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.
PubMed
Google Scholar
Ostrom Q, Cote D, Ascha M, Kruchko C, Barnholtz-Sloan J. Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol. 2018;4(9):1254–62.
PubMed
PubMed Central
Google Scholar
Nagarajan R, Costello J. Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol. 2009;19(3):188–97.
CAS
PubMed
Google Scholar
Jhaveri N, Chen T, Hofman F. Tumor vasculature and glioma stem cells: contributions to glioma progression. Cancer Lett. 2016;380(2):545–51.
CAS
PubMed
Google Scholar
Kalinina J, Peng J, Ritchie J, Van Meir E. Proteomics of gliomas: initial biomarker discovery and evolution of technology. Neuro Oncol. 2011;13(9):926–42.
CAS
PubMed
PubMed Central
Google Scholar
Febbo P, Ladanyi M, Aldape K, De Marzo A, Hammond M, Hayes D, et al. NCCN Task Force report: evaluating the clinical utility of tumor markers in oncology. J Natl Compr Canc Netw. 2011. https://doi.org/10.6004/jnccn.2011.0137.
Article
PubMed
Google Scholar
Berghoff A, Stefanits H, Heinzl H, Preusser M. Clinical neuropathology practice news 4-2012: levels of evidence for brain tumor biomarkers. Clin Neuropathol. 2012;31(4):206–9.
PubMed
PubMed Central
Google Scholar
Patel M, Vogelbaum M, Barnett G, Jalali R, Ahluwalia M. Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin Investig Drugs. 2012;21(9):1247–66.
CAS
PubMed
Google Scholar
Gupta K, Salunke P. Molecular markers of glioma: an update on recent progress and perspectives. J Cancer Res Clin Oncol. 2012;138(12):1971–81.
CAS
PubMed
Google Scholar
Wesseling P, Capper D. WHO 2016 Classification of gliomas. Neuropathol Appl Neurobiol. 2018;44(2):139–50.
CAS
PubMed
Google Scholar
Kafka A, Bačić M, Tomas D, Žarković K, Bukovac A, Njirić N, et al. Different behaviour of DVL1, DVL2, DVL3 in astrocytoma malignancy grades and their association to TCF1 and LEF1 upregulation. J Cell Mol Med. 2019;23(1):641–55.
CAS
PubMed
Google Scholar
Olson O, Joyce J. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer. 2015;15(12):712–29.
CAS
PubMed
Google Scholar
Breznik B, Limback C, Porcnik A, Blejec A, Krajnc M, Bosnjak R, et al. Localization patterns of cathepsins K and X and their predictive value in glioblastoma. Radiol Oncol. 2018;52(4):433–42.
CAS
PubMed
PubMed Central
Google Scholar
Kenig S, Frangež R, Pucer A, Lah T. Inhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis. 2011;16(7):671–82.
CAS
PubMed
Google Scholar
Lankelma J, Voorend D, Barwari T, Koetsveld J, Van der Spek A, De Porto A, et al. Cathepsin L, target in cancer treatment? Life Sci. 2010;86:225–33.
CAS
PubMed
Google Scholar
Gole B, Huszthy P, Popović M, Jeruc J, Ardebili Y, Bjerkvig R, et al. The regulation of cysteine cathepsins and cystatins in human gliomas. Int J Cancer. 2012;131(8):1779–89.
CAS
PubMed
Google Scholar
Kenig S, Frangež R, Pucer A, Lah T. Inhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis: an international journal on programmed cell death. 2011;16(7):671–82.
CAS
Google Scholar
Lankelma J, Voorend D, Barwari T, Koetsveld J, Van der Spek A, De Porto A, et al. Cathepsin L, target in cancer treatment? Life sciences. 2010;86:225–33.
CAS
PubMed
Google Scholar
Flannery T, McQuaid S, McGoohan C, McConnell R, McGregor G, Mirakhur M, et al. Cathepsin S expression: an independent prognostic factor in glioblastoma tumours—a pilot study. Int J Cancer. 2006;119(4):854–60.
CAS
PubMed
Google Scholar
Khaket T, Singh M, Khan I, Bhardwaj M, Kang S. Targeting of cathepsin C induces autophagic dysregulation that directs ER stress mediated cellular cytotoxicity in colorectal cancer cells. Cell Signal. 2018;46:92–102.
CAS
PubMed
Google Scholar
Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma V. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev. 2019;39(2):517–60.
PubMed
Google Scholar
Zhang G, Yue X, Li S. Cathepsin C. Interacts with TNF-α/p38 MAPK Signaling Pathway to Promote Proliferation and Metastasis in Hepatocellular Carcinoma. Cancer research treatment: official journal of Korean Cancer Association. 2020;52(1):10–23.
CAS
Google Scholar
Ikenoue T, Hong S, Inoki K. Monitoring mammalian target of rapamycin (mTOR) activity. Methods Enzymol. 2009;452:165–80.
CAS
PubMed
Google Scholar
Xiao G, Zhang X, Zhang X, Chen Y, Xia Z, Cao H, et al. Aging-related genes are potential prognostic biomarkers for patients with gliomas. Aging. 2021;13(9):13239–63.
CAS
PubMed
PubMed Central
Google Scholar
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.
CAS
PubMed
PubMed Central
Google Scholar
Barrett T, Troup D, Wilhite S, Ledoux P, Evangelista C, Kim I, et al. NCBI GEO: archive for functional genomics data sets--10 years on. Nucleic Acids Res. 2011;39:D1005–10.
CAS
PubMed
Google Scholar
Thul P, Lindskog C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018;27(1):233–44.
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.
CAS
PubMed
PubMed Central
Google Scholar
Lamb J, Crawford E, Peck D, Modell J, Blat I, Wrobel M, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science (New York). 2006; 313(5795):pp. 1929–35.
Google Scholar
Joyce J, Hanahan D. Multiple roles for cysteine cathepsins in cancer. Cell Cycle. 2004;3(12):1516–619.
CAS
PubMed
Google Scholar
Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 2006;20(5):543–56.
CAS
PubMed
PubMed Central
Google Scholar
Ruffell B, Affara N, Cottone L, Junankar S, Johansson M, DeNardo D, et al. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev. 2013;27(19):2086–98.
CAS
PubMed
PubMed Central
Google Scholar
Chai R, Zhang K, Chang Y, Wu F, Liu Y, Zhao Z, et al. Systematically characterize the clinical and biological significances of 1p19q genes in 1p/19q non-codeletion glioma. Carcinogenesis. 2019;40(10):1229–39.
CAS
PubMed
Google Scholar
Zhang H, Tao J, Sheng L, Hu X, Rong R, Xu M, et al. Twist2 promotes kidney cancer cell proliferation and invasion by regulating ITGA6 and CD44 expression in the ECM-receptor interaction pathway. Onco Targets Ther. 2016;9:1801–12.
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Liu H, Liu S, Wang Y, Xie J, Stinchcombe T, et al. Genetic variant of IRAK2 in the toll-like receptor signaling pathway and survival of non-small cell lung cancer. Int J Cancer. 2018;143(10):2400–8.
CAS
PubMed
PubMed Central
Google Scholar
Grimmig T, Moench R, Kreckel J, Haack S, Rueckert F, Rehder R, et al. Toll Like Receptor 2, 4, and 9 signaling promotes autoregulative tumor cell growth and VEGF/PDGF Expression in human pancreatic cancer. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17122060.
Article
PubMed
PubMed Central
Google Scholar
Matijevic Glavan T, Cipak Gasparovic A, Vérillaud B, Busson P, Pavelic J. Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF. Mol Carcinog. 2017;56(4):1214–26.
CAS
PubMed
Google Scholar
Jia D, Wang L. The other face of TLR3: A driving force of breast cancer stem cells. Mol Cell Oncol. 2015;2(4):e981443.
PubMed
PubMed Central
Google Scholar
Veyrat M, Durand S, Classe M, Glavan T, Oker N, Kapetanakis N, et al. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget. 2016;7(50):82580–93.
PubMed
PubMed Central
Google Scholar
Dong X, Tamura K, Kobayashi D, Ando N, Sumita K, Maehara T. LAPTM4B-35 is a novel prognostic factor for glioblastoma. J Neurooncol. 2017;132(2):295–303.
CAS
PubMed
Google Scholar
Ookawa S, Wanibuchi M, Kataoka-Sasaki Y, Sasaki M, Oka S, Ohtaki S, et al. Digital polymerase chain reaction quantification of SERPINA1 predicts prognosis in high-grade glioma. World Neurosurg. 2018;111:e783-9.
PubMed
Google Scholar
Kee H, Ahn K, Choi K, Won Song J, Heo T, Jung S, et al. Expression of brain-specific angiogenesis inhibitor 3 (BAI3) in normal brain and implications for BAI3 in ischemia-induced brain angiogenesis and malignant glioma. FEBS Lett. 2004;569:307–16.
CAS
PubMed
Google Scholar
Rodrigues Silva D, Baroni S, Svidzinski A, Bersani-Amado C, Cortez D. Anti-inflammatory activity of the extract, fractions and amides from the leaves of Piper ovatum Vahl (Piperaceae). J Ethnopharmacol. 2008;116(3):569–73.
CAS
PubMed
Google Scholar
Bezerra D, Pessoa C, de Moraes M, Saker-Neto N, Silveira E, Costa-Lotufo L. Overview of the therapeutic potential of piplartine (piperlongumine). Eur J Pharm Sci. 2013;48(3):453–63.
CAS
PubMed
Google Scholar
Kim T, Song J, Kim S, Parikh A, Mo X, Palanichamy K, et al. Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro Oncol. 2014;16(10):1354–64.
CAS
PubMed
PubMed Central
Google Scholar
Liu Q, Liu J, Chen Y, Xie X, Xiong X, Qiu X, et al. Piperlongumine inhibits migration of glioblastoma cells via activation of ROS-dependent p38 and JNK signaling pathways. Oxid Med Cell Longev. 2014. https://doi.org/10.1155/2014/653732.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Pan F, Li L, Liu Q, Chen Y, Xiong X, et al. Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation. Biochem Biophys Res Commun. 2013;437(1):87–93.
CAS
PubMed
Google Scholar
Pei S, Minhajuddin M, Callahan K, Balys M, Ashton J, Neering S, et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem. 2013;288(47):33542–58.
CAS
PubMed
PubMed Central
Google Scholar
Tian Q, Wang L, Sun X, Zeng F, Pan Q, Xue M. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J BUON. 2019;24(3):997–1002.
PubMed
Google Scholar