Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Article
PubMed
Google Scholar
Tang D, Dong S, Ma N, Xie D, Chen L, Fu L, et al. Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology. 2010;51(4):1255–63. https://doi.org/10.1002/hep.23451.
Article
CAS
PubMed
Google Scholar
Thein HH, Isaranuwatchai W, Qiao Y, Wong K, Sapisochin G, Chan KKW, et al. Cost-effectiveness analysis of potentially curative and combination treatments for hepatocellular carcinoma with person-level data in a Canadian setting. Cancer Med. 2017;6(9):2017–33. https://doi.org/10.1002/cam4.1119 (Epub 2017/08/10).
Article
CAS
PubMed
PubMed Central
Google Scholar
Giovanni G, AntonioFabioMassimo V, ClaudiaAngelaMaria F, Di Stefano D, Marianna S, Paolo G, et al. Current treatment options for HCC: from pharmacokinetics to efficacy and adverse events in liver cirrhosis. Curr Drug Metab. 2020;21(11):866–84. https://doi.org/10.2174/1389200221999200918141239.
Article
CAS
Google Scholar
Song TJ, Ip EW, Fong Y. Hepatocellular carcinoma: current surgical management. Gastroenterology. 2004;127(5 Suppl 1):S248–60. https://doi.org/10.1053/j.gastro.2004.09.039 (Epub 2004/10/28).
Article
PubMed
Google Scholar
Dai Q, Zhang C, Yuan Z, Sun Q, Jiang Y. Current discovery strategies for hepatocellular carcinoma therapeutics. Expert Opin Drug Discov. 2020;15(2):243–58. https://doi.org/10.1080/17460441.2020.1696769.
Article
CAS
PubMed
Google Scholar
Benson A, D’Angelica M, Abbott D, Anaya D, Anders R, Are C, et al. Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2021;19(5):541–65. https://doi.org/10.6004/jnccn.2021.0022.
Article
Google Scholar
Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020;5(1):87. https://doi.org/10.1038/s41392-020-0187-x.
Article
PubMed
PubMed Central
Google Scholar
da Fonseca L, Reig M, Bruix J. Tyrosine kinase inhibitors and hepatocellular carcinoma. Clin Liver Dis. 2020;24(4):719–37. https://doi.org/10.1016/j.cld.2020.07.012.
Article
PubMed
Google Scholar
Elalfy M, Borlak J. Exon array analysis to identify diethyl-nitrosamine differentially regulated and alternately spliced genes in early liver carcinogenesis in the transgenic mouse ATT-myc model. SciMedicine J. 2021;3:2704–9833. https://doi.org/10.28991/SciMedJ-2021-0302-6.
Article
Google Scholar
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6. https://doi.org/10.1056/nejm197111182852108 (Epub 1971/11/18).
Article
CAS
PubMed
Google Scholar
Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg. 1972;175(3):409–16. https://doi.org/10.1097/00000658-197203000-00014 (Epub 1972/03/01).
Article
CAS
PubMed
PubMed Central
Google Scholar
Dimova I, Popivanov G, Djonov V. Angiogenesis in cancer—general pathways and their therapeutic implications. Jbuon. 2014;19(1):15–21 (Epub 2014/03/25).
PubMed
Google Scholar
El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol. 2013;170(4):712–29. https://doi.org/10.1111/bph.12344 (Epub 2013/08/22).
Article
CAS
PubMed
PubMed Central
Google Scholar
Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, et al. Resistance mechanisms to anti-angiogenic therapies in cancer. Front Oncol. 2020;10:221. https://doi.org/10.3389/fonc.2020.00221 (Epub 2020/03/17).
Article
PubMed
PubMed Central
Google Scholar
Felmeden D. Angiogenesis: basic pathophysiology and implications for disease. Eur Heart J. 2003;24(7):586–603. https://doi.org/10.1016/s0195-668x(02)00635-8.
Article
CAS
PubMed
Google Scholar
Llovet J, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. https://doi.org/10.1056/NEJMoa0708857.
Article
CAS
PubMed
Google Scholar
Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–73. https://doi.org/10.1016/s0140-6736(18)30207-1 (Epub 2018/02/13).
Article
CAS
PubMed
Google Scholar
Bruix J, Qin S, Merle P, Granito A, Huang Y-H, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. https://doi.org/10.1016/s0140-6736(16)32453-9.
Article
CAS
PubMed
Google Scholar
Abou-Alfa GK, Meyer T, Cheng A-L, El-Khoueiry AB, Rimassa L, Ryoo B-Y, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63. https://doi.org/10.1056/NEJMoa1717002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo XY, Wu KM, He XX. Advances in drug development for hepatocellular carcinoma: clinical trials and potential therapeutic targets. J Exp Clin Cancer Res. 2021;40(1):172. https://doi.org/10.1186/s13046-021-01968-w (Epub 2021/05/20).
Article
PubMed
PubMed Central
Google Scholar
Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, et al. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 2020;10(9):2993–3036.
CAS
PubMed
PubMed Central
Google Scholar
Lin Y, Tan C, Chen C, Ou D, Cheng A, Hsu C. Immunomodulatory effects of current targeted therapies on hepatocellular carcinoma: implication for the future of immunotherapy. Semin Liver Dis. 2018;38(4):379–88. https://doi.org/10.1055/s-0038-1673621.
Article
CAS
PubMed
Google Scholar
Pugh RN. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(23):2497–8.
Article
Google Scholar
Ikeda K, Kudo M, Kawazoe S, Osaki Y, Ikeda M, Okusaka T, et al. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J Gastroenterol. 2017;52(4):512–9. https://doi.org/10.1007/s00535-016-1263-4 (Epub 2016/10/06).
Article
CAS
PubMed
Google Scholar
Mu Q, Najafi M. Modulation of the tumor microenvironment (TME) by melatonin. Eur J Pharmacol. 2021;907: 174365. https://doi.org/10.1016/j.ejphar.2021.174365.
Article
CAS
PubMed
Google Scholar
Hernandez-Gea V, Toffanin S, Friedman S, Llovet J. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144(3):512–27. https://doi.org/10.1053/j.gastro.2013.01.002.
Article
PubMed
Google Scholar
Yang J, Nakamura I, Roberts L. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol. 2011;21(1):35–43. https://doi.org/10.1016/j.semcancer.2010.10.007.
Article
CAS
PubMed
Google Scholar
Zhang J, Gu C, Song Q, Zhu M, Xu Y, Xiao M, et al. Identifying cancer-associated fibroblasts as emerging targets for hepatocellular carcinoma. Cell Biosci. 2020;10(1):127. https://doi.org/10.1186/s13578-020-00488-y (Epub 2020/12/10).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38(1):396. https://doi.org/10.1186/s13046-019-1396-4 (Epub 2019/09/11).
Article
PubMed
PubMed Central
Google Scholar
Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2015;12(12):681–700. https://doi.org/10.1038/nrgastro.2015.173 (Epub 2015/10/21).
Article
CAS
PubMed
Google Scholar
Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7(10):3129–40. https://doi.org/10.1158/1535-7163.MCT-08-0013 (Epub 2008/10/15).
Article
CAS
PubMed
Google Scholar
Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61(5):1591–602. https://doi.org/10.1002/hep.27665 (Epub 2014/12/23).
Article
CAS
PubMed
Google Scholar
Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 2016;150(7):1646-1658.e17. https://doi.org/10.1053/j.gastro.2016.02.040 (Epub 2016/03/01).
Article
CAS
PubMed
Google Scholar
El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502. https://doi.org/10.1016/s0140-6736(17)31046-2 (Epub 2017/04/25).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–52. https://doi.org/10.1016/S1470-2045(18)30351-6.
Article
PubMed
Google Scholar
Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894–905. https://doi.org/10.1056/NEJMoa1915745 (Epub 2020/05/14).
Article
CAS
PubMed
Google Scholar
Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. IMbrave150: updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo) + bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2021;39(3_suppl):267. https://doi.org/10.1200/JCO.2021.39.3_suppl.267.
Article
Google Scholar
Kudo M. Immune checkpoint inhibition in hepatocellular carcinoma: basics and ongoing clinical trials. Oncology. 2017;92(Suppl 1):50–62. https://doi.org/10.1159/000451016 (Epub 2017/02/02).
Article
PubMed
Google Scholar
Inarrairaegui M, Melero I, Sangro B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin Cancer Res. 2018;24(7):1518–24. https://doi.org/10.1158/1078-0432.CCR-17-0289 (Epub 2017/11/16).
Article
CAS
PubMed
Google Scholar
Weinmann A, Galle PR. Role of immunotherapy in the management of hepatocellular carcinoma: current standards and future directions. Curr Oncol. 2020;27(13):152–64. https://doi.org/10.3747/co.27.7315.
Article
PubMed
Google Scholar
Cariani E, Missale G. Immune landscape of hepatocellular carcinoma microenvironment: implications for prognosis and therapeutic applications. Liver Int. 2019;39(9):1608–21. https://doi.org/10.1111/liv.14192 (Epub 2019/07/18).
Article
PubMed
Google Scholar
Unitt E, Marshall A, Gelson W, Rushbrook SM, Davies S, Vowler SL, et al. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol. 2006;45(2):246–53. https://doi.org/10.1016/j.jhep.2005.12.027 (Epub 2006/04/04).
Article
CAS
PubMed
Google Scholar
Nishida N, Kudo M. Immunological microenvironment of hepatocellular carcinoma and its clinical implication. Oncology. 2017;92(suppl 1):40–9. https://doi.org/10.1159/000451015.
Article
PubMed
Google Scholar
Friedman S. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72. https://doi.org/10.1152/physrev.00013.2007.
Article
CAS
PubMed
Google Scholar
Nishida N, Kudo M. Immunological microenvironment of hepatocellular carcinoma and its clinical implication. Oncology. 2017;92(Suppl 1):40–9. https://doi.org/10.1159/000451015 (Epub 2016/10/21).
Article
PubMed
Google Scholar
Yang YM, Kim SY, Seki E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets. Semin Liver Dis. 2019;39(1):26–42. https://doi.org/10.1055/s-0038-1676806 (Epub 2019/02/28).
Article
CAS
PubMed
PubMed Central
Google Scholar
Polidoro MA, Mikulak J, Cazzetta V, Lleo A, Mavilio D, Torzilli G, et al. Tumor microenvironment in primary liver tumors: a challenging role of natural killer cells. World J Gastroenterol. 2020;26(33):4900–18. https://doi.org/10.3748/wjg.v26.i33.4900 (Epub 2020/09/22).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109. https://doi.org/10.1158/0008-5472.Can-04-1443 (Epub 2004/10/07).
Article
CAS
PubMed
Google Scholar
Kane RC, Farrell AT, Madabushi R, Booth B, Chattopadhyay S, Sridhara R, et al. Sorafenib for the treatment of unresectable hepatocellular carcinoma. Oncologist. 2009;14(1):95–100. https://doi.org/10.1634/theoncologist.2008-0185.
Article
CAS
PubMed
Google Scholar
Rameshbabu S, Labadie BW, Argulian A, Patnaik A. Targeting innate immunity in cancer therapy. Vaccines. 2021. https://doi.org/10.3390/vaccines9020138 (Epub 2021/02/13).
Article
PubMed
PubMed Central
Google Scholar
Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000;1(2):119–26. https://doi.org/10.1038/77793.
Article
CAS
PubMed
Google Scholar
Chitadze G, Lettau M, Bhat J, Wesch D, Steinle A, Fürst D, et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Cancer. 2013;133(7):1557–66. https://doi.org/10.1002/ijc.28174.
Article
CAS
PubMed
Google Scholar
Liu G, Atteridge CL, Wang X, Lundgren AD, Wu JD. The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule A independent of A disintegrin and metalloproteinases. J Immunol. 2010;184(7):3346–50. https://doi.org/10.4049/jimmunol.0903789 (Epub 2010/03/09).
Article
CAS
PubMed
Google Scholar
Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, et al. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology. 2010;51(4):1264–73. https://doi.org/10.1002/hep.23456.
Article
CAS
PubMed
Google Scholar
Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, et al. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology. 2010;51(4):1264–73. https://doi.org/10.1002/hep.23456 (Epub 2010/01/26).
Article
CAS
PubMed
Google Scholar
Sprinzl MF, Reisinger F, Puschnik A, Ringelhan M, Ackermann K, Hartmann D, et al. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology. 2013;57(6):2358–68. https://doi.org/10.1002/hep.26328 (Epub 2013/02/21).
Article
CAS
PubMed
Google Scholar
Hage C, Hoves S, Strauss L, et al. Sorafenib induces pyroptosis in macrophages and triggers NK cell-mediated cytotoxicity against hepatocellular carcinoma. Hepatology. 2019;70(4):1280–97.
Article
CAS
PubMed
Google Scholar
Shi L, Lin H, Li G, Jin R-A, Xu J, Sun Y, et al. Targeting androgen receptor (AR)→IL12A signal enhances efficacy of sorafenib plus NK cells immunotherapy to better suppress HCC progression. Mol Cancer Ther. 2016;15(4):731–42. https://doi.org/10.1158/1535-7163.Mct-15-0706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stehle F, Schulz K, Fahldieck C, Kalich J, Lichtenfels R, Riemann D, et al. Reduced immunosuppressive properties of axitinib in comparison with other tyrosine kinase inhibitors. J Biol Chem. 2013;288(23):16334–1647. https://doi.org/10.1074/jbc.M112.437962 (Epub 2013/04/30).
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Wei S, Xu X, Jiang Y, Xue L, Jiang P, et al. Sorafenib attenuated the function of natural killer cells infiltrated in HCC through inhibiting ERK1/2. Int Immunopharmacol. 2019;76: 105855. https://doi.org/10.1016/j.intimp.2019.105855 (Epub 2019/09/01).
Article
CAS
PubMed
Google Scholar
Zhang QB, Sun HC, Zhang KZ, Jia QA, Biu Y, Wang M, et al. Suppression of natural killer cells by sorafenib contributes to prometastatic effects in hepatocellular carcinoma. PLoS ONE. 2013;8(2): e55945. https://doi.org/10.1371/journal.pone.0055945 (Epub 2013/02/15).
Article
CAS
PubMed
PubMed Central
Google Scholar
Krusch M, Salih J, Schlicke M, Baessler T, Kampa KM, Mayer F, et al. The kinase inhibitors sunitinib and sorafenib differentially affect NK cell antitumor reactivity in vitro. J Immunol. 2009;183(12):8286–94. https://doi.org/10.4049/jimmunol.0902404.
Article
CAS
PubMed
Google Scholar
Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22136995 (Epub 2021/07/03).
Article
PubMed
PubMed Central
Google Scholar
Mehla K, Singh PK. Metabolic regulation of macrophage polarization in cancer. Trends Cancer. 2019;5(12):822–34. https://doi.org/10.1016/j.trecan.2019.10.007 (Epub 2019/12/10).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhee I. Diverse macrophages polarization in tumor microenvironment. Arch Pharmacal Res. 2016;39(11):1588–96. https://doi.org/10.1007/s12272-016-0820-y.
Article
CAS
Google Scholar
Wei X, Tang C, Lu X, Liu R, Zhou M, He D, et al. MiR-101 targets DUSP1 to regulate the TGF-β secretion in sorafenib inhibits macrophage-induced growth of hepatocarcinoma. Oncotarget. 2015;6(21):18389–405. https://doi.org/10.18632/oncotarget.4089 (Epub 2015/07/15).
Article
PubMed
PubMed Central
Google Scholar
Sprinzl MF, Puschnik A, Schlitter AM, Schad A, Ackermann K, Esposito I, et al. Sorafenib inhibits macrophage-induced growth of hepatoma cells by interference with insulin-like growth factor-1 secretion. J Hepatol. 2015;62(4):863–70. https://doi.org/10.1016/j.jhep.2014.11.011.
Article
CAS
PubMed
Google Scholar
Zhang Z, Zhu Y, Xu D, Li TE, Li JH, Xiao ZT, et al. IFN-α facilitates the effect of sorafenib via shifting the M2-like polarization of TAM in hepatocellular carcinoma. Am J Transl Res. 2021;13(1):301–13 (Epub 2021/02/03).
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Cao Q, Wen W, Wang H. Targeted therapy for hepatocellular carcinoma: challenges and opportunities. Cancer Lett. 2019;460:1–9. https://doi.org/10.1016/j.canlet.2019.114428 (Epub 2019/06/18).
Article
CAS
PubMed
Google Scholar
Juengpanich S, Topatana W, Lu C, Staiculescu D, Li S, Cao J, et al. Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: possible targets and future directions in the regorafenib era. Int J Cancer. 2020;147(7):1778–92. https://doi.org/10.1002/ijc.32970.
Article
CAS
PubMed
Google Scholar
Bronte V, Murray PJ. Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer. Nat Med. 2015;21(2):117–9. https://doi.org/10.1038/nm.3794 (Epub 2015/02/06).
Article
CAS
PubMed
Google Scholar
Zhou S, Zhou Z, Hu Z, Huang X, Wang Z, Chen E, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 2016;150(7):1646-1658.e17. https://doi.org/10.1053/j.gastro.2016.02.040.
Article
CAS
PubMed
Google Scholar
Chen ML, Yan BS, Lu WC, Chen MH, Yu SL, Yang PC, et al. Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in tumor microenvironment to augment antitumor immunity. Int J Cancer. 2014;134(2):319–31. https://doi.org/10.1002/ijc.28362 (Epub 2013/07/03).
Article
CAS
PubMed
Google Scholar
Cao M, Xu Y, Youn J-I, Cabrera R, Zhang X, Gabrilovich D, et al. Kinase inhibitor sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab Investig. 2011;91(4):598–608. https://doi.org/10.1038/labinvest.2010.205.
Article
CAS
PubMed
Google Scholar
Sunay MM, Foote JB, Leatherman JM, Edwards JP, Armstrong TD, Nirschl CJ, et al. Sorafenib combined with HER-2 targeted vaccination can promote effective T cell immunity in vivo. Int Immunopharmacol. 2017;46:112–23. https://doi.org/10.1016/j.intimp.2017.02.028 (Epub 2017/03/11).
Article
CAS
PubMed
PubMed Central
Google Scholar
Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis. 2001;21(3):311–35. https://doi.org/10.1055/s-2001-17550.
Article
CAS
PubMed
Google Scholar
Geng ZM, Jha RK, Li B, Chen C, Li WZ, Zheng JB, et al. Sorafenib inhibition of hepatic stellate cell proliferation in tumor microenvironment of hepatocellular carcinoma: a study of the sorafenib mechanisms. Cell Biochem Biophys. 2014;69(3):717–24. https://doi.org/10.1007/s12013-014-9858-y (Epub 2014/03/19).
Article
CAS
PubMed
Google Scholar
Chen Y, Huang Y, Reiberger T, Duyverman AM, Huang P, Samuel R, et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology. 2014;59(4):1435–47. https://doi.org/10.1002/hep.26790 (Epub 2013/11/19).
Article
CAS
PubMed
Google Scholar
Sung YC, Liu YC, Chao PH, Chang CC, Jin PR, Lin TT, et al. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics. 2018;8(4):894–905. https://doi.org/10.7150/thno.21168 (Epub 2018/02/22).
Article
CAS
PubMed
PubMed Central
Google Scholar
Du B, Shim JS. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016. https://doi.org/10.3390/molecules21070965 (Epub 2016/07/28).
Article
PubMed
PubMed Central
Google Scholar
Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54. https://doi.org/10.1038/nrc822 (Epub 2002/08/22).
Article
CAS
PubMed
Google Scholar
Nagai T, Arao T, Furuta K, Sakai K, Kudo K, Kaneda H, et al. Sorafenib inhibits the hepatocyte growth factor-mediated epithelial mesenchymal transition in hepatocellular carcinoma. Mol Cancer Ther. 2011;10(1):169–77. https://doi.org/10.1158/1535-7163.MCT-10-0544 (Epub 2011/01/12).
Article
CAS
PubMed
Google Scholar
Grotegut S, von Schweinitz D, Christofori G, Lehembre F. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 2006;25(15):3534–45. https://doi.org/10.1038/sj.emboj.7601213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132(14):3151–61. https://doi.org/10.1242/dev.01907 (Epub 2005/06/29).
Article
CAS
PubMed
Google Scholar
Hass R, von der Ohe J, Ungefroren H. The intimate relationship among EMT, MET and TME: a T(ransdifferentiation) E(nhancing) M(ix) to be exploited for therapeutic purposes. Cancers. 2020. https://doi.org/10.3390/cancers12123674 (Epub 2020/12/11).
Article
PubMed
PubMed Central
Google Scholar
Peinado H, Quintanilla M, Cano A. Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem. 2003;278(23):21113–23. https://doi.org/10.1074/jbc.M211304200.
Article
CAS
PubMed
Google Scholar
Deckers M, van Dinther M, Buijs J, Que I, Löwik C, van der Pluijm G, et al. The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Can Res. 2006;66(4):2202–9. https://doi.org/10.1158/0008-5472.Can-05-3560.
Article
CAS
Google Scholar
Kang D, Han Z, Oh GH, Joo Y, Choi HJ, Song JJ. Down-regulation of TGF-β expression sensitizes the resistance of hepatocellular carcinoma cells to sorafenib. Yonsei Med J. 2017;58(5):899–909. https://doi.org/10.3349/ymj.2017.58.5.899 (Epub 2017/08/10).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen YL, Lv J, Ye XL, Sun MY, Xu Q, Liu CH, et al. Sorafenib inhibits transforming growth factor beta1-mediated epithelial–mesenchymal transition and apoptosis in mouse hepatocytes. Hepatology. 2011;53(5):1708–18. https://doi.org/10.1002/hep.24254 (Epub 2011/03/02).
Article
CAS
PubMed
Google Scholar
Gu FM, Li QL, Gao Q, Jiang JH, Huang XY, Pan JF, et al. Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3. World J Gastroenterol. 2011;17(34):3922–32. https://doi.org/10.3748/wjg.v17.i34.3922 (Epub 2011/10/26).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hung MH, Tai WT, Shiau CW, Chen KF. Downregulation of signal transducer and activator of transcription 3 by sorafenib: a novel mechanism for hepatocellular carcinoma therapy. World J Gastroenterol. 2014;20(41):15269–74. https://doi.org/10.3748/wjg.v20.i41.15269 (Epub 2014/11/12).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung CL, Wang SW, Sun WC, Shu CW, Kao YC, Shiao MS, et al. Sorafenib suppresses TGF-beta responses by inducing caveolae/lipid raft-mediated internalization/degradation of cell-surface type II TGF-beta receptors: Implications in development of effective adjunctive therapy for hepatocellular carcinoma. Biochem Pharmacol. 2018;154:39–53. https://doi.org/10.1016/j.bcp.2018.04.014 (Epub 2018/04/22).
Article
CAS
PubMed
Google Scholar
Hirao A, Sato Y, Tanaka H, Nishida K, Tomonari T, Hirata M, et al. MiR-125b-5p is involved in sorafenib resistance through ataxin-1-mediated epithelial–mesenchymal transition in hepatocellular carcinoma. Cancers. 2021. https://doi.org/10.3390/cancers13194917.
Article
PubMed
PubMed Central
Google Scholar
van Malenstein H, Dekervel J, Verslype C, Van Cutsem E, Windmolders P, Nevens F, et al. Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett. 2013;329(1):74–83. https://doi.org/10.1016/j.canlet.2012.10.021 (Epub 2012/11/01).
Article
CAS
PubMed
Google Scholar
Wang H, Xu L, Zhu X, Wang P, Chi H, Meng Z. Activation of phosphatidylinositol 3-kinase/Akt signaling mediates sorafenib-induced invasion and metastasis in hepatocellular carcinoma. Oncol Rep. 2014;32(4):1465–72. https://doi.org/10.3892/or.2014.3352 (Epub 2014/07/30).
Article
CAS
PubMed
Google Scholar
Zhang KW, Wang D, Cai H, Cao MQ, Zhang YY, Zhuang PY, et al. IL-6 plays a crucial role in epithelial–mesenchymal transition and pro-metastasis induced by sorafenib in liver cancer. Oncol Rep. 2021;45(3):1105–17. https://doi.org/10.3892/or.2021.7926 (Epub 2021/01/13).
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7(1):10. https://doi.org/10.1038/s41389-017-0011-9 (Epub 2018/01/25).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic reprogramming in the hepatocellular carcinoma microenvironment: cause and effect. Cancer Manag Res. 2020;12:5957–74. https://doi.org/10.2147/cmar.S258196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia S, Pan Y, Liang Y, Xu J, Cai X. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2020;51: 102610. https://doi.org/10.1016/j.ebiom.2019.102610.
Article
PubMed
PubMed Central
Google Scholar
Henze AT, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 2016;126(10):3672–9. https://doi.org/10.1172/jci84427 (Epub 2016/08/03).
Article
PubMed
PubMed Central
Google Scholar
Lee S, Kim JH, Lee JH, Lee JH, Han JK. Non-invasive monitoring of the therapeutic response in sorafenib-treated hepatocellular carcinoma based on photoacoustic imaging. Eur Radiol. 2018;28(1):372–81. https://doi.org/10.1007/s00330-017-4960-3.
Article
PubMed
Google Scholar
Liu LP, Ho RL, Chen GG, Lai PB. Sorafenib inhibits hypoxia-inducible factor-1α synthesis: implications for antiangiogenic activity in hepatocellular carcinoma. Clin Cancer Res. 2012;18(20):5662–71. https://doi.org/10.1158/1078-0432.Ccr-12-0552 (Epub 2012/08/30).
Article
CAS
PubMed
Google Scholar
Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008;122(3):664–71. https://doi.org/10.1002/ijc.23131.
Article
CAS
PubMed
Google Scholar
Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14(17):5459–65. https://doi.org/10.1158/1078-0432.Ccr-07-5270 (Epub 2008/09/04).
Article
CAS
PubMed
Google Scholar
Tohyama O, Matsui J, Kodama K, Hata-Sugi N, Kimura T, Okamoto K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;2014: 638747. https://doi.org/10.1155/2014/638747 (Epub 2014/10/09).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto Y, Matsui J, Matsushima T, Obaishi H, Miyazaki K, Nakamura K, et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell. 2014;6:18. https://doi.org/10.1186/2045-824x-6-18 (Epub 2014/09/10).
Article
PubMed
PubMed Central
Google Scholar
Kimura T, Kato Y, Ozawa Y, Kodama K, Ito J, Ichikawa K, et al. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci. 2018;109(12):3993–4002. https://doi.org/10.1111/cas.13806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kato Y, Tabata K, Kimura T, Yachie-Kinoshita A, Ozawa Y, Yamada K, et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS ONE. 2019;14(2): e0212513. https://doi.org/10.1371/journal.pone.0212513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu J, Fang P, Wang C, Gu M, Pan B, Guo W, et al. The immunomodulatory activity of lenvatinib prompts the survival of patients with advanced hepatocellular carcinoma. Cancer Med. 2021. https://doi.org/10.1002/cam4.4312 (Epub 2021/10/05).
Article
PubMed
PubMed Central
Google Scholar
Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018;4(5): e180013. https://doi.org/10.1001/jamaoncol.2018.0013 (Epub 2018/03/16).
Article
PubMed
PubMed Central
Google Scholar
Kang Y-K, Boku N, Satoh T, Ryu M-H, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10111):2461–71. https://doi.org/10.1016/s0140-6736(17)31827-5.
Article
CAS
PubMed
Google Scholar
Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325–40. https://doi.org/10.1038/nrclinonc.2018.29 (Epub 2018/03/07).
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng H, Kan A, Lyu N, Mu L, Han Y, Liu L, et al. Dual vascular endothelial growth factor receptor and fibroblast growth factor receptor inhibition elicits antitumor immunity and enhances programmed cell death-1 checkpoint blockade in hepatocellular carcinoma. Liver Cancer. 2020;9(3):338–57. https://doi.org/10.1159/000505695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torrens L, Montironi C, Puigvehí M, Mesropian A, Leslie J, Haber P, et al. Immunomodulatory effects of lenvatinib plus anti-PD1 in mice and rationale for patient enrichment in hepatocellular carcinoma. Hepatology. 2021. https://doi.org/10.1002/hep.32023.
Article
PubMed
Google Scholar
Kawazoe A, Fukuoka S, Nakamura Y, Kuboki Y, Wakabayashi M, Nomura S, et al. Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an open-label, single-arm, phase 2 trial. Lancet Oncol. 2020;21(8):1057–65. https://doi.org/10.1016/s1470-2045(20)30271-0.
Article
CAS
PubMed
Google Scholar
Llovet J, Shepard KV, Finn RS, Ikeda M, Sung M, Baron AD, et al. 747P—a phase Ib trial of lenvatinib (LEN) plus pembrolizumab (PEMBRO) in unresectable hepatocellular carcinoma (uHCC): updated results. Ann Oncol. 2019;30:v286–7. https://doi.org/10.1093/annonc/mdz247.073.
Article
Google Scholar
Gyawali B, Prasad V. Me too-drugs with limited benefits—the tale of regorafenib for HCC. Nat Rev Clin Oncol. 2018;15(1):62. https://doi.org/10.1038/nrclinonc.2017.190 (Epub 2017/11/29).
Article
PubMed
Google Scholar
Rey JB, Launay-Vacher V, Tournigand C. Regorafenib as a single-agent in the treatment of patients with gastrointestinal tumors: an overview for pharmacists. Target Oncol. 2015;10(2):199–213. https://doi.org/10.1007/s11523-014-0333-x (Epub 2014/09/13).
Article
PubMed
Google Scholar
Carr BI, Cavallini A, Lippolis C, D’Alessandro R, Messa C, Refolo MG, et al. Fluoro-sorafenib (regorafenib) effects on hepatoma cells: growth inhibition, quiescence, and recovery. J Cell Physiol. 2013;228(2):292–7. https://doi.org/10.1002/jcp.24148 (Epub 2012/07/11).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tai WT, Chu PY, Shiau CW, Chen YL, Li YS, Hung MH, et al. STAT3 mediates regorafenib-induced apoptosis in hepatocellular carcinoma. Clin Cancer Res. 2014;20(22):5768–76. https://doi.org/10.1158/1078-0432.CCR-14-0725 (Epub 2014/09/25).
Article
CAS
PubMed
Google Scholar
Ou D, Chen C, Hsu C, Chung C, Feng Z, Lee B, et al. Regorafenib enhances antitumor immunity via inhibition of p38 kinase/Creb1/Klf4 axis in tumor-associated macrophages. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-001657.
Article
PubMed
PubMed Central
Google Scholar
Shigeta K, Matsui A, Kikuchi H, Klein S, Mamessier E, Chen IX, et al. Regorafenib combined with PD1 blockade increases CD8 T-cell infiltration by inducing CXCL10 expression in hepatocellular carcinoma. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-001435 (Epub 2020/11/26).
Article
PubMed
PubMed Central
Google Scholar
Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 2011;9(1):50–63. https://doi.org/10.1016/j.stem.2011.06.005 (Epub 2011/07/06).
Article
CAS
PubMed
Google Scholar
Arai J, Goto K, Stephanou A, Tanoue Y, Ito S, Muroyama R, et al. Predominance of regorafenib over sorafenib: restoration of membrane-bound MICA in hepatocellular carcinoma cells. J Gastroenterol Hepatol. 2018;33(5):1075–81. https://doi.org/10.1111/jgh.14029 (Epub 2017/10/22).
Article
CAS
PubMed
Google Scholar
Cooley S, Xiao F, Pitt M, Gleason M, McCullar V, Bergemann TL, et al. A subpopulation of human peripheral blood NK cells that lacks inhibitory receptors for self-MHC is developmentally immature. Blood. 2007;110(2):578–86. https://doi.org/10.1182/blood-2006-07-036228 (Epub 2007/03/30).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai AK, Khan AY, Worgo CE, Wang LL, Liang Y, Davila E. A Multikinase and DNA-PK inhibitor combination immunomodulates melanomas, suppresses tumor progression, and enhances immunotherapies. Cancer Immunol Res. 2017;5(9):790–803. https://doi.org/10.1158/2326-6066.Cir-17-0009 (Epub 2017/08/05).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W, Yang J, Zhang Y, Cai H, Chen X, Sun D. Regorafenib reverses HGF-induced sorafenib resistance by inhibiting epithelial–mesenchymal transition in hepatocellular carcinoma. FEBS Open Bio. 2019;9(2):335–47. https://doi.org/10.1002/2211-5463.12578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang N, Zhang S, Wu W, Lu W, Jiang M, Zheng N, et al. Regorafenib inhibits migration, invasion, and vasculogenic mimicry of hepatocellular carcinoma via targeting ID1-mediated EMT. Mol Carcinog. 2021;60(2):151–63. https://doi.org/10.1002/mc.23279.
Article
CAS
PubMed
Google Scholar
Fan LC, Teng HW, Shiau CW, Tai WT, Hung MH, Yang SH, et al. Regorafenib (stivarga) pharmacologically targets epithelial–mesenchymal transition in colorectal cancer. Oncotarget. 2016;7(39):64136–47. https://doi.org/10.18632/oncotarget.11636 (Epub 2016/09/01).
Article
PubMed
PubMed Central
Google Scholar
Arai H, Battaglin F, Wang J, Lo JH, Soni S, Zhang W, et al. Molecular insight of regorafenib treatment for colorectal cancer. Cancer Treat Rev. 2019;81: 101912. https://doi.org/10.1016/j.ctrv.2019.101912 (Epub 2019/11/13).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J, Che L, Li L, Pilo MG, Cigliano A, Ribback S, et al. Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci Rep. 2016;6:20484. https://doi.org/10.1038/srep20484 (Epub 2016/02/10).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao J, Xu E, Zhao Y, Singh S, Li X, Couchy G, et al. Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and point-mutant beta-catenin. Hepatology. 2016;64(5):1587–605. https://doi.org/10.1002/hep.28601 (Epub 2016/10/22).
Article
CAS
PubMed
Google Scholar
Patnaik A, Swanson KD, Csizmadia E, Solanki A, Landon-Brace N, Gehring MP, et al. Cabozantinib eradicates advanced murine prostate cancer by activating antitumor innate immunity. Cancer Discov. 2017;7(7):750–65. https://doi.org/10.1158/2159-8290.Cd-16-0778 (Epub 2017/03/10).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwilas AR, Ardiani A, Donahue RN, Aftab DT, Hodge JW. Dual effects of a targeted small-molecule inhibitor (cabozantinib) on immune-mediated killing of tumor cells and immune tumor microenvironment permissiveness when combined with a cancer vaccine. J Transl Med. 2014;12(1):294. https://doi.org/10.1186/s12967-014-0294-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tripathi M, Nandana S, Billet S, Posadas EM, Bhowmick NA. Abstract LB-274: microenvironment mediates the efficacy of cabozantinib in prostate cancer. Cancer Res. 2016;76(14 Supplement):LB-274.
Google Scholar
Shang R, Song X, Wang P, Zhou Y, Lu X, Wang J, et al. Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut. 2020. https://doi.org/10.1136/gutjnl-2020-320716.
Article
PubMed
Google Scholar
Yau T, Zagonel V, Santoro A, Acosta-Rivera M, Choo SP, Matilla A, et al. Nivolumab (NIVO) + ipilimumab (IPI) + cabozantinib (CABO) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): results from CheckMate 040. J Clin Oncol. 2020;38(4):478. https://doi.org/10.1200/JCO.2020.38.4_suppl.478.
Article
Google Scholar
Manikandan G, Yuvashree M, Sangeetha A, Bhuvana KP, Nayak SK. Liver tissue regeneration using nano silver impregnated sodium alginate/PVA composite nanofibres. SciMedicine J. 2020;2(1):16–21. https://doi.org/10.28991/SciMedJ-2020-0201-3.
Article
CAS
Google Scholar
Trotter JF. Liver transplantation around the world. Curr Opin Organ Transplant. 2017;22(2):123–7. https://doi.org/10.1097/mot.0000000000000392 (Epub 2017/02/06).
Article
PubMed
Google Scholar
Chang C, Dinh T, Lee Y, Wang F, Sung Y, Yu P, et al. Nanoparticle delivery of MnO and antiangiogenic therapy to overcome hypoxia-driven tumor escape and suppress hepatocellular carcinoma. ACS Appl Mater Interfaces. 2020;12(40):44407–19. https://doi.org/10.1021/acsami.0c08473.
Article
CAS
PubMed
Google Scholar
Mir N, Jayachandran A, Dhungel B, Shrestha R, Steel JC. Epithelial-to-mesenchymal transition: a mediator of sorafenib resistance in advanced hepatocellular carcinoma. Curr Cancer Drug Targets. 2017;17(8):698–706. https://doi.org/10.2174/1568009617666170427104356 (Epub 2017/05/04).
Article
CAS
PubMed
Google Scholar
Zhao H, Cheng X, Yu J, Li Y. Stabilization of snail maintains the sorafenib resistance of hepatocellular carcinoma cells. Arch Biochem Biophys. 2021;699: 108754. https://doi.org/10.1016/j.abb.2021.108754.
Article
CAS
PubMed
Google Scholar
Shrestha R, Prithviraj P, Bridle K, Crawford D, Jayachandran A. Combined inhibition of TGF-β1-induced EMT and PD-L1 silencing re-sensitizes hepatocellular carcinoma to sorafenib treatment. J Clin Med. 2021. https://doi.org/10.3390/jcm10091889.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Chen G, Han Z, Cheng H, Qiao L, Li Y. IL-6/STAT3 signaling contributes to sorafenib resistance in hepatocellular carcinoma through targeting cancer stem cells. Onco Targets Ther. 2020;13:9721–30. https://doi.org/10.2147/ott.S262089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Yang X, Liang Q, Yu Y, Shen X, Sun G. Valproic acid overcomes sorafenib resistance by reducing the migration of Jagged2-mediated Notch1 signaling pathway in hepatocellular carcinoma cells. Int J Biochem Cell Biol. 2020;126: 105820. https://doi.org/10.1016/j.biocel.2020.105820.
Article
CAS
PubMed
Google Scholar
Man S, Yao J, Lv P, Liu Y, Yang L, Ma L. Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment. Food Funct. 2020;11(7):6422–32. https://doi.org/10.1039/c9fo01901d.
Article
CAS
PubMed
Google Scholar
López-Grueso M, González R, Muntané J, Bárcena J, Padilla C. Thioredoxin downregulation enhances sorafenib effects in hepatocarcinoma cells. Antioxidants. 2019. https://doi.org/10.3390/antiox8100501.
Article
PubMed
PubMed Central
Google Scholar
Tan W, Luo X, Li W, Zhong J, Cao J, Zhu S, et al. TNF-α is a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2019;40:446–56. https://doi.org/10.1016/j.ebiom.2018.12.047.
Article
PubMed
Google Scholar
Yang X, Xia W, Chen L, Wu C, Zhang C, Olson P, et al. Synergistic antitumor effect of a γ-secretase inhibitor PF-03084014 and sorafenib in hepatocellular carcinoma. Oncotarget. 2018;9(79):34996–5007. https://doi.org/10.18632/oncotarget.26209.
Article
PubMed
PubMed Central
Google Scholar
Wu C, Wang X, Chok S, Man K, Tsang S, Chan A, et al. Blocking CDK1/PDK1/β-Catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma. Theranostics. 2018;8(14):3737–50. https://doi.org/10.7150/thno.25487.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Li D, Jiang Q, Cao S, Sun H, Chai Y, et al. Novel ADAM-17 inhibitor ZLDI-8 enhances the in vitro and in vivo chemotherapeutic effects of sorafenib on hepatocellular carcinoma cells. Cell Death Dis. 2018;9(7):743. https://doi.org/10.1038/s41419-018-0804-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Q, Yu J, Guo X, Hou G, Yuan S, Yang Y, et al. IL-17A promotes the invasion-metastasis cascade via the AKT pathway in hepatocellular carcinoma. Mol Oncol. 2018;12(6):936–52. https://doi.org/10.1002/1878-0261.12306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Liu Y, Meng L, Ji B, Yang D. Synergistic antitumor effect of sorafenib in combination with ATM inhibitor in hepatocellular carcinoma cells. Int J Med Sci. 2017;14(6):523–9. https://doi.org/10.7150/ijms.19033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang S, Wang Q, Feng M, Li J, Guan Z, An D, et al. C2-ceramide enhances sorafenib-induced caspase-dependent apoptosis via PI3K/AKT/mTOR and Erk signaling pathways in HCC cells. Appl Microbiol Biotechnol. 2017;101(4):1535–46. https://doi.org/10.1007/s00253-016-7930-9.
Article
CAS
PubMed
Google Scholar
Fu R, Jiang S, Li J, Chen H, Zhang X. Activation of the HGF/c-MET axis promotes lenvatinib resistance in hepatocellular carcinoma cells with high c-MET expression. Med Oncol. 2020;37(4):24. https://doi.org/10.1007/s12032-020-01350-4.
Article
CAS
PubMed
Google Scholar
Lee Y, Kim S, Kim B, Chang H, Kim S, Park C, et al. Anti-cancer effects of HNHA and lenvatinib by the suppression of EMT-mediated drug resistance in cancer stem cells. Neoplasia. 2018;20(2):197–206. https://doi.org/10.1016/j.neo.2017.12.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu CC, Huang SY, Chang SF, Liao KF, Chiu SC. The synergistic anti-cancer effects of NVP-BEZ235 and regorafenib in hepatocellular carcinoma. Molecules. 2020. https://doi.org/10.3390/molecules25102454 (Epub 2020/05/30).
Article
PubMed
PubMed Central
Google Scholar
Wang J, Zhang N, Han Q, Lu W, Wang L, Yang D, et al. Pin1 inhibition reverses the acquired resistance of human hepatocellular carcinoma cells to regorafenib via the Gli1/Snail/E-cadherin pathway. Cancer Lett. 2019;444:82–93. https://doi.org/10.1016/j.canlet.2018.12.010 (Epub 2018/12/26).
Article
CAS
PubMed
Google Scholar
Kudo M. Scientific rationale for combined immunotherapy with PD-1/PD-L1 antibodies and VEGF inhibitors in advanced hepatocellular carcinoma. Cancers. 2020. https://doi.org/10.3390/cancers12051089.
Article
PubMed
PubMed Central
Google Scholar
Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018;15(5):310–24. https://doi.org/10.1038/nrclinonc.2018.9 (Epub 2018/02/13).
Article
CAS
PubMed
Google Scholar
Zhu XD, Tang ZY, Sun HC. Targeting angiogenesis for liver cancer: past, present, and future. Genes Dis. 2020;7(3):328–35. https://doi.org/10.1016/j.gendis.2020.03.010 (Epub 2020/09/05).
Article
CAS
PubMed
PubMed Central
Google Scholar
McDermott DF, Atkins MB, Motzer RJ, Rini BI, Escudier BJ, Fong L, et al. A phase II study of atezolizumab (atezo) with or without bevacizumab (bev) versus sunitinib (sun) in untreated metastatic renal cell carcinoma (mRCC) patients (pts). J Clin Oncol. 2017;35(6_suppl):431. https://doi.org/10.1200/JCO.2017.35.6_suppl.431.
Article
Google Scholar
Ribas A, Hodi FS, Lawrence DP, Atkinson V, Starodub A, Carlino MS, et al. Pembrolizumab (pembro) in combination with dabrafenib (D) and trametinib (T) for BRAF-mutant advanced melanoma: phase 1 KEYNOTE-022 study. J Clin Oncol. 2016;34(15_suppl):3014. https://doi.org/10.1200/JCO.2016.34.15_suppl.3014.
Article
Google Scholar
Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–27. https://doi.org/10.1056/NEJMoa1816714 (Epub 2019/02/20).
Article
CAS
PubMed
Google Scholar
Kawazoe A, Fukuoka S, Nakamura Y, Kuboki Y, Wakabayashi M, Nomura S, et al. Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an open-label, single-arm, phase 2 trial. Lancet Oncol. 2020. https://doi.org/10.1016/S1470-2045(20)30271-0.
Article
PubMed
Google Scholar
Hubbard J, Mahoney M, Loui W, Roberts L, Smyrk T, Gatalica Z, et al. Phase I/II randomized trial of sorafenib and bevacizumab as first-line therapy in patients with locally advanced or metastatic hepatocellular carcinoma: north central cancer treatment group trial N0745 (alliance). Target Oncol. 2017;12(2):201–9. https://doi.org/10.1007/s11523-016-0467-0.
Article
PubMed
PubMed Central
Google Scholar
Ferrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science. 2018;359(6383):1537–42. https://doi.org/10.1126/science.aao0505 (Epub 2018/03/31).
Article
CAS
PubMed
PubMed Central
Google Scholar
Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 2005;65(14):6321–9. https://doi.org/10.1158/0008-5472.Can-04-4252 (Epub 2005/07/19).
Article
CAS
PubMed
Google Scholar
Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther. 2020;5(1):146. https://doi.org/10.1038/s41392-020-00264-x (Epub 2020/08/13).
Article
PubMed
PubMed Central
Google Scholar