Vicente-Manzanares M, Horwitz AR. Cell migration: an overview. Methods Mol Biol. 2011;769:1–24.
Article
CAS
Google Scholar
Patel LR, Camacho DF, Shiozawa Y, Pienta KJ, Taichman RS. Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol. 2011;7:1285–97.
Article
CAS
Google Scholar
Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.
Article
CAS
Google Scholar
Maryas J, Faktor J, Dvorakova M, Struharova I, Grell P, Bouchal P. Proteomics in investigation of cancer metastasis: functional and clinical consequences and methodological challenges. Proteomics. 2014;14:426–40.
Article
CAS
Google Scholar
Penet MF, Chen Z, Bhujwalla ZM. MRI of metastasis-permissive microenvironments. Future Oncol. 2011;7:1269–84.
Article
Google Scholar
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5:28.
Article
Google Scholar
Faktor J, Dvorakova M, Maryas J, Struharova I, Bouchal P. Identification and characterisation of pro-metastatic targets, pathways and molecular complexes using a toolbox of proteomic technologies. Klin Onkol. 2012;25(Suppl 2):2S70-7.
Google Scholar
Hsieh TC, Wu JM. Resveratrol suppresses prostate cancer epithelial cell scatter/invasion by targeting inhibition of hepatocyte growth factor (HGF) secretion by prostate stromal cells and upregulation of e-cadherin by prostate cancer epithelial cells. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21051760.
Article
Google Scholar
Cory G. Scratch-wound assay. Methods Mol Biol. 2011;769:25–30.
Article
CAS
Google Scholar
Eccles SA, Box C, Court W. Cell migration/invasion assays and their application in cancer drug discovery. Biotechnol Annu Rev. 2005;11:391–421.
Article
CAS
Google Scholar
Magdalena J, Millard TH, Etienne-Manneville S, Launay S, Warwick HK, Machesky LM. Involvement of the Arp2/3 complex and Scar2 in Golgi polarity in scratch wound models. Mol Biol Cell. 2003;14:670–84.
Article
CAS
Google Scholar
Sigma-Aldrich. Cell comb scratch assay. Merck KGaA. 2021. https://www.sigmaaldrich.com/CZ/en/product/mm/1710191?context=product. Accessed 24 Aug 2021.
Knopfova L. Funkce proteinu c-Myb ve vybraných aspektech kancerogeneze, vol. 41. Brno: Informacni listy, Geneticka spolecnost Gregora Mendela; 2013. p. 37–50.
Google Scholar
Vang Mouritzen M, Jenssen H. Optimized scratch assay for in vitro testing of cell migration with an automated optical camera. J Vis Exp. 2018. https://doi.org/10.3791/57691.
Article
Google Scholar
Glenn HL, Messner J, Meldrum DR. A simple non-perturbing cell migration assay insensitive to proliferation effects. Sci Rep. 2016;6:31694.
Article
CAS
Google Scholar
Block ER, Matela AR, SundarRaj N, Iszkula ER, Klarlund JK. Wounding induces motility in sheets of corneal epithelial cells through loss of spatial constraints: role of heparin-binding epidermal growth factor-like growth factor signaling. J Biol Chem. 2004;279:24307–12.
Article
CAS
Google Scholar
Nikolic DL, Boettiger AN, Bar-Sagi D, Carbeck JD, Shvartsman SY. Role of boundary conditions in an experimental model of epithelial wound healing. Am J Physiol Cell Physiol. 2006;291:C68-75.
Article
CAS
Google Scholar
Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P. Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci U S A. 2007;104:15988–93.
Article
CAS
Google Scholar
Gough W, Hulkower KI, Lynch R, McGlynn P, Uhlik M, Yan L, Lee JA. A quantitative, facile, and high-throughput image-based cell migration method is a robust alternative to the scratch assay. J Biomol Screen. 2011;16:155–63.
Article
Google Scholar
Guy R. Wound healing assay—cell exclusion assays. 2021. Cytosmart. https://cytosmart.com/resources/wound-healing-assays-cell-exclusion-assays?token=kyD-8ln6bA4QX4HhT_7l--Bp-Y4zdKvi. Accessed 01 Sep 2021.
Fram ST, Wells CM, Jones GE. HGF-induced DU145 cell scatter assay. Methods Mol Biol. 2011;769:31–40.
Article
CAS
Google Scholar
Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.
Article
CAS
Google Scholar
Cooper CR, Pienta KJ. Cell adhesion and chemotaxis in prostate cancer metastasis to bone: a minireview. Prostate Cancer Prostatic Dis. 2000;3:6–12.
Article
CAS
Google Scholar
Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev Cancer. 2011;11:573–87.
Article
CAS
Google Scholar
Zicha D, Dunn GA, Brown AF. A new direct-viewing chemotaxis chamber. J Cell Sci. 1991;99(Pt 4):769–75.
Article
Google Scholar
ProSciTech_Pty_Ltd. Dunn chemotaxis chamber. Laboratory Resource. 2015. https://laboratoryresource.com.au/?navaction=getitem&id=119. Accessed 06 Sep 2021.
Kassis J, Lauffenburger DA, Turner T, Wells A. Tumor invasion as dysregulated cell motility. Semin Cancer Biol. 2001;11:105–17.
Article
CAS
Google Scholar
Muinonen-Martin AJ, Veltman DM, Kalna G, Insall RH. An improved chamber for direct visualisation of chemotaxis. PLoS ONE. 2010;5: e15309.
Article
CAS
Google Scholar
Zigmond SH. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol. 1977;75:606–16.
Article
CAS
Google Scholar
Zantl R, Horn E. Chemotaxis of slow migrating mammalian cells analysed by video microscopy. Methods Mol Biol. 2011;769:191–203.
Article
CAS
Google Scholar
IBIDI. Chemotaxis and migration tool. IBIDI Inc. 2021. https://ibidi.com/chemotaxis-analysis/171-chemotaxis-and-migration-tool.html. Accessed 31 Aug 2021
Keurhorst D, Liashkovich I, Frontzek F, Nitzlaff S, Hofschroer V, Dreier R, Stock C. MMP3 activity rather than cortical stiffness determines NHE1-dependent invasiveness of melanoma cells. Cancer Cell Int. 2019;19:285.
Article
Google Scholar
Vargas P, Terriac E, Lennon-Dumenil AM, Piel M. Study of cell migration in microfabricated channels. J Vis Exp. 2014. https://doi.org/10.3791/51099.
Article
Google Scholar
IBIDI. Slide for chemotaxis. IBIDI Inc. 2021. https://ibidi.com/channel-slides/9--slide-chemotaxis-ibitreat.html. Accessed 31 Aug 2021.
Kleinman HK, Luckenbill-Edds L, Cannon FW, Sephel GC. Use of extracellular matrix components for cell culture. Anal Biochem. 1987;166:1–13.
Article
CAS
Google Scholar
Sigma-Aldrich. Attachment factors for cell culture. Merck KGaA. 2021. https://www.sigmaaldrich.com/CZ/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/3d-cell-culture/attachment-factors-for-cell-culture?gclid=CjwKCAjwvuGJBhB1EiwACU1AiYUmnMUWEi-aqr4UjxtuPneVqdvafg2oL4nqFgg3hpgG9zgTlhC-CBoCDa4QAvD_BwE. Accessed 08 Sep 2021.
Falasca M, Raimondi C, Maffucci T. Boyden chamber. Methods Mol Biol. 2011;769:87–95.
Article
CAS
Google Scholar
Merck-Millipore (2021) Boyden chamber technique. Merck KGaA. https://www.merckmillipore.com/CZ/cs/life-science-research/antibodies-assays/assays-overview/cell-invasion-migration-assays/boyden-chamber-technique/I0qb.qB.KSMAAAFANtY.1ZcQ,nav. Accessed 06 September 2021
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.
Article
CAS
Google Scholar
Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10:1886–90.
Article
CAS
Google Scholar
ThermoFisherScientific. Application of Alginate Scaffolds for 3D Culture. Thermo Fisher Scientific Inc. 2018. http://assets.thermofisher.com/TFS-Assets/CMD/posters/Application-of-Alginate-Scaffolds-for-3D-Cell-Culture.pdf. Accessed 08 Sep 2021.
Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962;115:453–66.
Article
CAS
Google Scholar
Marshall J. Transwell((R)) invasion assays. Methods Mol Biol. 2011;769:97–110.
Article
CAS
Google Scholar
ThermoFisherScientific. Application properties of materials used for porous membranes in cell culture inserts. Thermo Fisher Scientific Inc. 2018. https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FBID%2FApplication-Notes%2Fapplication-properties-materials-porous-membranes-cell-culture-inserts-application-note.pdf&title=QXBwbGljYXRpb24gTm90ZTogQXBwbGljYXRpb24gcHJvcGVydGllcyBvZiBtYXRlcmlhbHMgdXNlZCBmb3IgcG9yb3VzIG1lbWJyYW5lcyBpbiBjZWxsIGN1bHR1cmUgaW5zZXJ0cw==. Accessed 06 Sep.
ThermoFisherScientific. Transwell Migration Assay protocol. Thermo Fisher Scientific Inc. 2011. https://www.thermofisher.com/cz/en/home/references/protocols/cell-and-tissue-analysis/cell-profilteration-assay-protocols/angiogenesis-protocols/transwell-migration-assay.html. Accessed 06 Sep 2021.
Agilent. xCELLigence RTCA. Agilent Technologies Inc. 2021. https://explore.agilent.com/ACEA-joins-Agilent. Accessed 16 Nov 2021
Limame R, Wouters A, Pauwels B, Fransen E, Peeters M, Lardon F, De Wever O, Pauwels P. Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS ONE. 2012;7: e46536.
Article
CAS
Google Scholar
Agilent. Cell analysis - xCELLingence. Agilent Technologies Inc. 2019. https://www.agilent.com/cs/library/datasheets/public/datasheet-cell-analysis-xcelligence-dp-5994-1068en-agilent.pdf. Accessed 07 Sep 2021.
Bird C, Kirstein S. Real-time, label-free monitoring of cellular invasion and migration with the xCELLigence system. Nat Methods. 2009;6:v–vi.
Article
CAS
Google Scholar
Agilent. Real-Time and Dynamic Monitoring of Cell Proliferation and Viability for Adherent Cells. Agilent Technologies Inc. 2020. https://www.agilent.com/cs/library/applications/application-cell-proliferation-viability-adherent-cells-xCELLigence-5994-1695en-agilent.pdf. Accessed 07 Sep 2021.
Li Lei. Three dimensional microscopy—imaging 3D microstructures by freeform microoptics. Wiley Analytical Science; 2011. https://doi.org/10.1002/imaging.2577.
Cain RJ, d’Agua BB, Ridley AJ. Quantification of transendothelial migration using three-dimensional confocal microscopy. Methods Mol Biol. 2011;769:167–90.
Article
CAS
Google Scholar
Jonkman J, Brown CM, Wright GD, Anderson KI, North AJ. Tutorial: guidance for quantitative confocal microscopy. Nat Protoc. 2020;15:1585–611.
Article
CAS
Google Scholar
IBIDI. Confocal microscopy. IBIDI Inc. 2021. https://ibidi.com/content/216-confocal-microscopy. Accessed 07 Sep 2021.
Arena ET, Rueden CT, Hiner MC, Wang S, Yuan M, Eliceiri KW. Quantitating the cell: turning images into numbers with ImageJ. Wiley Interdiscip Rev Dev Biol. 2017. https://doi.org/10.1002/wdev.260.
Article
Google Scholar
Perrin L, Bayarmagnai B, Gligorijevic B. Frontiers in intravital multiphoton microscopy of cancer. Cancer Rep (Hoboken). 2020;3: e1192.
Google Scholar
Dunn KW, Young PA. Principles of multiphoton microscopy. Nephron Exp Nephrol. 2006;103:e33-40.
Article
Google Scholar
Konig K. Multiphoton microscopy in life sciences. J Microsc. 2000;200:83–104.
Article
CAS
Google Scholar
Robinson JP. Principles of confocal microscopy. Methods Cell Biol. 2001;63:89–106.
Article
CAS
Google Scholar
Zong W, Wu R, Li M, Hu Y, Li Y, Li J, Rong H, Wu H, Xu Y, Lu Y, Jia H, Fan M, Zhou Z, Zhang Y, Wang A, Chen L, Cheng H. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods. 2017;14:713–9.
Article
CAS
Google Scholar
Fumagalli A, Drost J, Suijkerbuijk SJ, van Boxtel R, de Ligt J, Offerhaus GJ, Begthel H, Beerling E, Tan EH, Sansom OJ, Cuppen E, Clevers H, van Rheenen J. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci U S A. 2017;114:E2357–64.
Article
CAS
Google Scholar
Nedosekin DA, Verkhusha VV, Melerzanov AV, Zharov VP, Galanzha EI. In vivo photoswitchable flow cytometry for direct tracking of single circulating tumor cells. Chem Biol. 2014;21:792–801.
Article
CAS
Google Scholar
Adams MW, Loftus AF, Dunn SE, Joens MS, Fitzpatrick JAJ. Light Sheet Fluorescence Microscopy (LSFM). Curr Protoc Cytom. 2015;71:12 37 1-12415.
Google Scholar
Greger K, Swoger J, Stelzer EH. Basic building units and properties of a fluorescence single plane illumination microscope. Rev Sci Instrum. 2007;78: 023705.
Article
CAS
Google Scholar
Pan C, Schoppe O, Parra-Damas A, Cai R, Todorov MI, Gondi G, von Neubeck B, Bogurcu-Seidel N, Seidel S, Sleiman K, Veltkamp C, Forstera B, Mai H, Rong Z, Trompak O, Ghasemigharagoz A, Reimer MA, Cuesta AM, Coronel J, Jeremias I, Saur D, Acker-Palmer A, Acker T, Garvalov BK, Menze B, Zeidler R, Erturk A. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell. 2019;179(1661–1676): e19.
Google Scholar
Tomer R, Lovett-Barron M, Kauvar I, Andalman A, Burns VM, Sankaran S, Grosenick L, Broxton M, Yang S, Deisseroth K. SPED light sheet microscopy: fast mapping of biological system structure and function. Cell. 2015;163:1796–806.
Article
CAS
Google Scholar
Albert-Smet I, Marcos-Vidal A, Vaquero JJ, Desco M, Munoz-Barrutia A, Ripoll J. Applications of light-sheet microscopy in microdevices. Front Neuroanat. 2019;13:1.
Article
CAS
Google Scholar
Merz SF, Jansen P, Ulankiewicz R, Bornemann L, Schimming T, Griewank K, Cibir Z, Kraus A, Stoffels I, Aspelmeier T, Brandau S, Schadendorf D, Hadaschik E, Ebel G, Gunzer M, Klode J. High-resolution three-dimensional imaging for precise staging in melanoma. Eur J Cancer. 2021;159:182–93.
Article
Google Scholar
Glaser AK, Bishop KW, Barner LA, Susaki EA, Kubota SI, Gao G, Serafin RB, Balaram P, Turschak E, Nicovich PR, Lai H, Lucas LAG, Yi Y, Nichols EK, Huang H, Reder NP, Wilson JJ, Sivakumar R, Shamskhou E, Stoltzfus CR, Wei X, Hempton AK, Pende M, Murawala P, Dodt HU, Imaizumi T, Shendure J, Beliveau BJ, Gerner MY, Xin L, Zhao H, True LD, Reid RC, Chandrashekar J, Ueda HR, Svoboda K, Liu JTC. A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nat Methods. 2022;19:613–9.
Article
CAS
Google Scholar
Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 2006;66:3034–43.
Article
CAS
Google Scholar
Fontana R, Yang J. Matrix degradation assay to measure the ability of tumor cells to degrade extracellular matrix. Methods Mol Biol. 2021;2294:151–63.
Article
CAS
Google Scholar
Jerrell RJ, Parekh A. Cellular traction stresses mediate extracellular matrix degradation by invadopodia. Acta Biomater. 2014;10:1886–96.
Article
CAS
Google Scholar
Martin KH, Hayes KE, Walk EL, Ammer AG, Markwell SM, Weed SA. Quantitative measurement of invadopodia-mediated extracellular matrix proteolysis in single and multicellular contexts. J Vis Exp. 2012. https://doi.org/10.3791/4119.
Article
Google Scholar
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760–72.
Article
CAS
Google Scholar
Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 2019;19:65–81.
Article
CAS
Google Scholar
Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol. 2010;188:11–9.
Article
CAS
Google Scholar
Heuze ML, Collin O, Terriac E, Lennon-Dumenil AM, Piel M. Cell migration in confinement: a micro-channel-based assay. Methods Mol Biol. 2011;769:415–34.
Article
CAS
Google Scholar
Wang M, Cheng B, Yang Y, Liu H, Huang G, Han L, Li F, Xu F. Microchannel stiffness and confinement jointly induce the mesenchymal-amoeboid transition of cancer cell migration. Nano Lett. 2019;19:5949–58.
Article
CAS
Google Scholar
Ma H, Liu T, Qin J, Lin B. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device. Electrophoresis. 2010;31:1599–605.
Article
CAS
Google Scholar
Mi S, Du Z, Xu Y, Wu Z, Qian X, Zhang M, Sun W. Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening. Sci Rep. 2016;6:35544.
Article
CAS
Google Scholar
Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. Elucidation of the roles of tumor integrin beta1 in the extravasation stage of the metastasis cascade. Cancer Res. 2016;76:2513–24.
Article
CAS
Google Scholar
Chandrasekaran S, Geng Y, DeLouise LA, King MR. Effect of homotypic and heterotypic interaction in 3D on the E-selectin mediated adhesive properties of breast cancer cell lines. Biomaterials. 2012;33:9037–48.
Article
CAS
Google Scholar
Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015;17:1–15.
Article
Google Scholar
Sant S, Johnston PA. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol. 2017;23:27–36.
Article
Google Scholar
Jensen C, Shay C, Teng Y. The new frontier of three-dimensional culture models to scale-up cancer research. Methods Mol Biol. 2022;2343:3–18.
Article
Google Scholar
Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO. Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg. 1990;72:463–75.
Article
CAS
Google Scholar
Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E, Sciacca FL, Ottolina A, Parati EA, La Porta C, Alessandri G, Marras C, Croci D, De Rossi M. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia. 2006;54:850–60.
Article
Google Scholar
Weiswald LB, Richon S, Validire P, Briffod M, Lai-Kuen R, Cordelieres FP, Bertrand F, Dargere D, Massonnet G, Marangoni E, Gayet B, Pocard M, Bieche I, Poupon MF, Bellet D, Dangles-Marie V. Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer. 2009;101:473–82.
Article
CAS
Google Scholar
Yuhas JM, Li AP, Martinez AO, Ladman AJ. A simplified method for production and growth of multicellular tumor spheroids. Cancer Res. 1977;37:3639–43.
CAS
Google Scholar
Dangles-Marie V, Pocard M, Richon S, Weiswald LB, Assayag F, Saulnier P, Judde JG, Janneau JL, Auger N, Validire P, Dutrillaux B, Praz F, Bellet D, Poupon MF. Establishment of human colon cancer cell lines from fresh tumors versus xenografts: comparison of success rate and cell line features. Cancer Res. 2007;67:398–407.
Article
CAS
Google Scholar
Dangles V, Femenia F, Laine V, Berthelemy M, Le Rhun D, Poupon MF, Levy D, Schwartz-Cornil I. Two- and three-dimensional cell structures govern epidermal growth factor survival function in human bladder carcinoma cell lines. Cancer Res. 1997;57:3360–4.
CAS
Google Scholar
Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles SA. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 2012;10:29.
Article
CAS
Google Scholar
Del Duca D, Werbowetski T, Del Maestro RF. Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol. 2004;67:295–303.
Article
Google Scholar
Sakai S, Inamoto K, Liu Y, Tanaka S, Arii S, Taya M. Multicellular tumor spheroid formation in duplex microcapsules for analysis of chemosensitivity. Cancer Sci. 2012;103:549–54.
Article
CAS
Google Scholar
Zhang X, Wang W, Yu W, Xie Y, Zhang X, Zhang Y, Ma X. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol Prog. 2005;21:1289–96.
Article
CAS
Google Scholar
Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22:456–72.
Article
CAS
Google Scholar
Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C, Speirs V, Thorne JL, Thygesen HH, Zougman A, Hull MA, Hanby AM, Hughes TA. MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol. 2013;231:388–99.
Article
CAS
Google Scholar
Collins T, Pyne E, Christensen M, Iles A, Pamme N, Pires IM. Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro. Biomicrofluidics. 2021;15: 044103.
Article
CAS
Google Scholar
Choi JW, Lee SY, Lee DW. A cancer spheroid array chip for selecting effective drug. Micromachines (Basel). 2019. https://doi.org/10.3390/mi10100688.
Article
Google Scholar
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–8.
Article
CAS
Google Scholar
Xu Z, Li E, Guo Z, Yu R, Hao H, Xu Y, Sun Z, Li X, Lyu J, Wang Q. Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl Mater Interfaces. 2016;8:25840–7.
Article
CAS
Google Scholar
Derda R, Laromaine A, Mammoto A, Tang SK, Mammoto T, Ingber DE, Whitesides GM. Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci U S A. 2009;106:18457–62.
Article
CAS
Google Scholar
Derda R, Tang SK, Laromaine A, Mosadegh B, Hong E, Mwangi M, Mammoto A, Ingber DE, Whitesides GM. Multizone paper platform for 3D cell cultures. PLoS ONE. 2011;6: e18940.
Article
CAS
Google Scholar
Hu LF, Yang X, Lan HR, Fang XL, Chen XY, Jin KT. Preclinical tumor organoid models in personalized cancer therapy: not everyone fits the mold. Exp Cell Res. 2021;408: 112858.
Article
CAS
Google Scholar
Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21:256–62.
Article
CAS
Google Scholar
Gao D, Chen Y. Organoid development in cancer genome discovery. Curr Opin Genet Dev. 2015;30:42–8.
Article
CAS
Google Scholar
Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, McNary TJ, Churakova Y, Cheung C, Triscott J, Pisapia D, Rao R, Mosquera JM, Robinson B, Faltas BM, Emerling BE, Gadi VK, Bernard B, Elemento O, Beltran H, Demichelis F, Kemp CJ, Grandori C, Cantley LC, Rubin MA. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 2017;7:462–77.
Article
Google Scholar
van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, McLaren-Douglas A, Blokker J, Jaksani S, Bartfeld S, Volckman R, van Sluis P, Li VS, Seepo S, Sekhar Pedamallu C, Cibulskis K, Carter SL, McKenna A, Lawrence MS, Lichtenstein L, Stewart C, Koster J, Versteeg R, van Oudenaarden A, Saez-Rodriguez J, Vries RG, Getz G, Wessels L, Stratton MR, McDermott U, Meyerson M, Garnett MJ, Clevers H. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.
Article
Google Scholar
Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, Gadellaa-van Hooijdonk CG, van der Velden DL, Peeper DS, Cuppen EP, Vries RG, Clevers H, Voest EE. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci U S A. 2015;112:13308–11.
Article
CAS
Google Scholar
Fujii M, Matano M, Toshimitsu K, Takano A, Mikami Y, Nishikori S, Sugimoto S, Sato T. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell. 2018;23(787–793): e6.
Google Scholar
Yuki K, Cheng N, Nakano M, Kuo CJ. Organoid models of tumor immunology. Trends Immunol. 2020;41:652–64.
Article
CAS
Google Scholar
Gunti S, Hoke ATK, Vu KP, London NR. Organoid and spheroid tumor models: techniques and applications. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13040874.
Article
Google Scholar
Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR, Kuo CJ. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 2009;15:701–6.
Article
CAS
Google Scholar
Brennan MD, Rexius-Hall ML, Elgass LJ, Eddington DT. Oxygen control with microfluidics. Lab Chip. 2014;14:4305–18.
Article
CAS
Google Scholar
Verissimo CS, Overmeer RM, Ponsioen B, Drost J, Mertens S, Verlaan-Klink I, Gerwen BV, van der Ven M, Wetering MV, Egan DA, Bernards R, Clevers H, Bos JL, Snippert HJ. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. Elife. 2016. https://doi.org/10.7554/eLife.18489.
Article
Google Scholar
Roper J, Tammela T, Cetinbas NM, Akkad A, Roghanian A, Rickelt S, Almeqdadi M, Wu K, Oberli MA, Sanchez-Rivera FJ, Park YK, Liang X, Eng G, Taylor MS, Azimi R, Kedrin D, Neupane R, Beyaz S, Sicinska ET, Suarez Y, Yoo J, Chen L, Zukerberg L, Katajisto P, Deshpande V, Bass AJ, Tsichlis PN, Lees J, Langer R, Hynes RO, Chen J, Bhutkar A, Jacks T, Yilmaz OH. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol. 2017;35:569–76.
Article
CAS
Google Scholar
Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol. 2017;24:1092–100.
Article
CAS
Google Scholar
Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev. 2014;69–70:1–18.
Article
Google Scholar
Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann Biomed Eng. 2015;43:2361–73.
Article
Google Scholar
Dhandayuthapani B, Sakthi Kumar D. Biomaterials for biomedical applications. In: Biomedical Applications of Polymeric Materials and Composites. 2016; pp. 1–20. https://doi.org/10.1002/9783527690916.ch1
Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–33.
Article
CAS
Google Scholar
Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16:224–30.
Article
CAS
Google Scholar
Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med. 2019;4:96–115.
Article
CAS
Google Scholar
Liu W, Song J, Du X, Zhou Y, Li Y, Li R, Lyu L, He Y, Hao J, Ben J, Wang W, Shi H, Wang Q. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater. 2019;91:195–208.
Article
CAS
Google Scholar
Artemenko Y, Swaney KF, Devreotes PN. Assessment of development and chemotaxis in Dictyostelium discoideum mutants. Methods Mol Biol. 2011;769:287–309.
Article
CAS
Google Scholar
Wong MC, Martynovsky M, Schwarzbauer JE. Analysis of cell migration using Caenorhabditis elegans as a model system. Methods Mol Biol. 2011;769:233–47.
Article
CAS
Google Scholar
Stramer B, Wood W. Inflammation and wound healing in Drosophila. Methods Mol Biol. 2009;571:137–49.
Article
CAS
Google Scholar
Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993;117:1223–37.
Article
CAS
Google Scholar
Elks PM, Loynes CA, Renshaw SA. Measuring inflammatory cell migration in the zebrafish. Methods Mol Biol. 2011;769:261–75.
Article
CAS
Google Scholar
Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8:353–67.
Article
CAS
Google Scholar
Box GM, Eccles SA. Simple experimental and spontaneous metastasis assays in mice. Methods Mol Biol. 2011;769:311–29.
Article
CAS
Google Scholar
Lu J, Steeg PS, Price JE, Krishnamurthy S, Mani SA, Reuben J, Cristofanilli M, Dontu G, Bidaut L, Valero V, Hortobagyi GN, Yu D. Breast cancer metastasis: challenges and opportunities. Cancer Res. 2009;69:4951–3.
Article
CAS
Google Scholar
Talmadge JE. Models of metastasis in drug discovery. Methods Mol Biol. 2010;602:215–33.
Article
CAS
Google Scholar
Roarty K, Echeverria GV. Laboratory models for investigating breast cancer therapy resistance and metastasis. Front Oncol. 2021;11: 645698.
Article
Google Scholar
Gomez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: progress and prospects. Dis Model Mech. 2017;10:1061–74.
Article
CAS
Google Scholar
Fidler IJ. Selection of successive tumour lines for metastasis. Nat New Biol. 1973;242:148–9.
Article
CAS
Google Scholar
Puchalapalli M, Zeng X, Mu L, Anderson A, Hix Glickman L, Zhang M, Sayyad MR, Mosticone Wangensteen S, Clevenger CV, Koblinski JE. NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (Nude) mice. PLoS ONE. 2016;11: e0163521.
Article
Google Scholar
Bankert RB, Balu-Iyer SV, Odunsi K, Shultz LD, Kelleher RJ Jr, Barnas JL, Simpson-Abelson M, Parsons R, Yokota SJ. Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis. PLoS ONE. 2011;6: e24420.
Article
CAS
Google Scholar
Cassidy JW, Caldas C, Bruna A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 2015;75:2963–8.
Article
CAS
Google Scholar
Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M. A mouse model of human breast cancer metastasis to human bone. Cancer Res. 2005;65:6130–8.
Article
CAS
Google Scholar
Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap. Cancer Res. 2016;76:6153–8.
Article
CAS
Google Scholar
Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163:39–53.
Article
CAS
Google Scholar
Giacobbe A, Abate-Shen C. Modeling metastasis in mice: a closer look. Trends Cancer. 2021;7:916–29.
Article
CAS
Google Scholar
Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis. 2005;26:513–23.
Article
CAS
Google Scholar
Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017;9:137–53.
Article
CAS
Google Scholar
Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJM, Ciampricotti M, Hawinkels L, Jonkers J, de Visser KE. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522:345–8.
Article
CAS
Google Scholar
Doornebal CW, Klarenbeek S, Braumuller TM, Klijn CN, Ciampricotti M, Hau CS, Hollmann MW, Jonkers J, de Visser KE. A preclinical mouse model of invasive lobular breast cancer metastasis. Cancer Res. 2013;73:353–63.
Article
CAS
Google Scholar
Kim HS, Kim HJ, Lee MR, Han I. EMMPRIN expression is associated with metastatic progression in osteosarcoma. BMC Cancer. 2021;21:1059.
Article
CAS
Google Scholar
Luo S, Wang H, Bai L, Chen Y, Chen S, Gao K, Wang H, Wu S, Song H, Ma K, Liu M, Yao F, Fang Y, Xiao Q. Activation of TMEM16A Ca(2+)-activated Cl(−) channels by ROCK1/moesin promotes breast cancer metastasis. J Adv Res. 2021;33:253–64.
Article
CAS
Google Scholar
Lu ZH, Kaliberov S, Sohn RE, Kaliberova L, Du Y, Prior JL, Leib DJ, Chauchereau A, Sehn JK, Curiel DT, Arbeit JM. A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget. 2017;8:12272–89.
Article
Google Scholar
Melo KP, Makela AV, Knier NN, Hamilton AM, Foster PJ. Magnetic microspheres can be used for magnetic particle imaging of cancer cells arrested in the mouse brain. Magn Reson Med. 2022;87:312–22.
Article
CAS
Google Scholar
Tanaka M, Dykes SS, Siemann DW. Inhibition of the Axl pathway impairs breast and prostate cancer metastasis to the bones and bone remodeling. Clin Exp Metastasis. 2021;38:321–35.
Article
CAS
Google Scholar
Paschall AV, Liu K. An orthotopic mouse model of spontaneous breast cancer metastasis. J Vis Exp. 2016. https://doi.org/10.3791/54040.
Article
Google Scholar
Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, Wang H, Ellis K, Cheerathodi M, McCarty JH, Palmieri D, Saunus J, Lakhani S, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.
Article
CAS
Google Scholar
Zhang W, Bado IL, Hu J, Wan YW, Wu L, Wang H, Gao Y, Jeong HH, Xu Z, Hao X, Lege BM, Al-Ouran R, Li L, Li J, Yu L, Singh S, Lo HC, Niu M, Liu J, Jiang W, Li Y, Wong STC, Cheng C, Liu Z, Zhang XH. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell. 2021;184(2471–2486): e20.
Google Scholar
Fidler IJ, Hart IR. Biological diversity in metastatic neoplasms: origins and implications. Science. 1982;217:998–1003.
Article
CAS
Google Scholar
Murugaesu N, Iravani M, van Weverwijk A, Ivetic A, Johnson DA, Antonopoulos A, Fearns A, Jamal-Hanjani M, Sims D, Fenwick K, Mitsopoulos C, Gao Q, Orr N, Zvelebil M, Haslam SM, Dell A, Yarwood H, Lord CJ, Ashworth A, Isacke CM. An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov. 2014;4:304–17.
Article
CAS
Google Scholar
van der Weyden L, Arends MJ, Campbell AD, Bald T, Wardle-Jones H, Griggs N, Velasco-Herrera MD, Tuting T, Sansom OJ, Karp NA, Clare S, Gleeson D, Ryder E, Galli A, Tuck E, Cambridge EL, Voet T, Macaulay IC, Wong K, Sanger Mouse Genetics P, Spiegel S, Speak AO, Adams DJ. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature. 2017;541:233–6.
Article
Google Scholar
Borowsky AD, Namba R, Young LJ, Hunter KW, Hodgson JG, Tepper CG, McGoldrick ET, Muller WJ, Cardiff RD, Gregg JP. Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin Exp Metastasis. 2005;22:47–59.
Article
CAS
Google Scholar
Jung J, Lee CH, Seol HS, Choi YS, Kim E, Lee EJ, Rhee JK, Singh SR, Jun ES, Han B, Hong SM, Kim SC, Chang S. Generation and molecular characterization of pancreatic cancer patient-derived xenografts reveals their heterologous nature. Oncotarget. 2016;7:62533–46.
Article
Google Scholar
Jung J, Seol HS, Chang S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat. 2018;50:1–10.
Article
Google Scholar
Sheth RA, Perkons N, Dondossola E, Subudhi SK, Gade TP, Tam AL. Patient-derived xenograft tumor models: overview and relevance to IR. J Vasc Interv Radiol. 2018;29(880–882): e1.
Google Scholar
Lee YC, Lin SC, Yu G, Zhu M, Song JH, Rivera K, Pappin DJ, Logothetis CJ, Panaretakis T, Wang G, Yu-Lee LY, Lin SH. Prostate tumor-induced stromal reprogramming generates Tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene. 2021;24:102388.
Google Scholar
DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–20.
Article
CAS
Google Scholar
Gills J, Moret R, Zhang X, Nelson J, Maresh G, Hellmers L, Canter D, Hudson M, Halat S, Matrana M, Marino MP, Reiser J, Shuh M, Laborde E, Latsis M, Talwar S, Bardot S, Li L. A patient-derived orthotopic xenograft model enabling human high-grade urothelial cell carcinoma of the bladder tumor implantation, growth, angiogenesis, and metastasis. Oncotarget. 2018;9:32718–29.
Article
Google Scholar
Criver. Patient-derived xenografts—PDX models. Charles River Laboratories International, Inc. 2021. https://www.criver.com/products-services/discovery-services/pharmacology-studies/oncology-immuno-oncology-studies/oncology-study-models/patient-derived-xenografts-pdx-models?region=3696. Accessed 15 Dec 2021.
JAX. Patient-derived xenograft (PDX) models. The Jackson Laboratory. 2021. https://www.jax.org/jax-mice-and-services/in-vivo-pharmacology/oncology-services/pdx-tumors#. Accessed 15 Dec 2021
Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015;15:451–2.
Article
CAS
Google Scholar
Solaimuthu B, Hayashi A, Khatib A, Shaul YD. Monitoring breast cancer growth and metastatic colony formation in mice using bioluminescence. J Vis Exp. 2021. https://doi.org/10.3791/63060.
Article
Google Scholar
OncoLinkTeam. All About Metastatic Cancer. 2021. https://www.oncolink.org/cancers/metastatic/all-about-metastatic-cancer. Accessed 5 Oct 2022.
Burley TA, Hesketh A, Bucca G, Kennedy E, Ladikou EE, Towler BP, Mitchell S, Smith CP, Fegan C, Johnston R, Pepper A, Pepper C. Elucidation of focal adhesion kinase as a modulator of migration and invasion and as a potential therapeutic target in chronic lymphocytic leukemia. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14071600.
Article
Google Scholar
Fertal SA, Zaidi SK, Stein JL, Stein GS, Heath JL. CXCR4 mediates enhanced cell migration in CALM-AF10 leukemia. Front Oncol. 2021;11: 708915.
Article
Google Scholar
Luo H, Sun R, Zheng Y, Huang J, Wang F, Long D, Wu Y. PIM3 promotes the proliferation and migration of acute myeloid leukemia cells. Onco Targets Ther. 2020;13:6897–905.
Article
CAS
Google Scholar
Macanas-Pirard P, Quezada T, Navarrete L, Broekhuizen R, Leisewitz A, Nervi B, Ramirez PA. The CCL2/CCR2 axis affects transmigration and proliferation but not resistance to chemotherapy of acute myeloid leukemia cells. PLoS ONE. 2017;12: e0168888.
Article
Google Scholar
Voermans C, van Heese WP, de Jong I, Gerritsen WR, van Der Schoot CE. Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia. 2002;16:650–7.
Article
CAS
Google Scholar
Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS ONE. 2011;6: e20599.
Article
CAS
Google Scholar
Zippel Sabrina RA, Lee-Thedieck C. Migration Assay for Leukemic Cells in a 3D Matrix Toward a Chemoattractant. Springer; 2019. https://doi.org/10.1007/978-1-4939-9574-5_8.
Walsby E, Buggins A, Devereux S, Jones C, Pratt G, Brennan P, Fegan C, Pepper C. Development and characterization of a physiologically relevant model of lymphocyte migration in chronic lymphocytic leukemia. Blood. 2014;123:3607–17.
Article
CAS
Google Scholar
Skroblyn T, Joedicke JJ, Pfau M, Kruger K, Bourquin JP, Izraeli S, Eckert C, Hopken UE. CXCR4 mediates leukemic cell migration and survival in the testicular microenvironment. J Pathol. 2022;258:12–25.
Article
CAS
Google Scholar
Madrazo E, Gonzalez-Novo R, Ortiz-Placin C, Garcia de Lacoba M, Gonzalez-Murillo A, Ramirez M, Redondo-Munoz J. Fast H3K9 methylation promoted by CXCL12 contributes to nuclear changes and invasiveness of T-acute lymphoblastic leukemia cells. Oncogene. 2022;41:1324–36.
Article
CAS
Google Scholar
Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci. 2015;16:5517–27.
Article
CAS
Google Scholar
Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33.
Article
CAS
Google Scholar
Sherman H, Gitschier HJ, Rossi AE. A novel three-dimensional immune oncology model for high-throughput testing of tumoricidal activity. Front Immunol. 2018;9:857.
Article
Google Scholar
Dish CC. A look towards the future of 3D cell culture—a panel discussion. cell culture dish. 2020. https://cellculturedish.com/a-look-towards-the-future-of-3d-cell-culture-a-panel-discussion/. Accessed 5 Oct 2022.
Lee MW, Miljanic M, Triplett T, Ramirez C, Aung KL, Eckhardt SG, Capasso A. Current methods in translational cancer research. Cancer Metastasis Rev. 2021;40:7–30.
Article
Google Scholar
ThermoFisherScientific. Corning™ Costar™ Transwell™-COL Collagen-Coated PTFE Membrane Insert. Thermo Fisher Scientific. 2022. https://www.fishersci.dk/shop/products/costar-transwell-col-collagen-treated-coated-membrane-insert-6/10042501. Accessed 11 Apr 2021.
SelectScience. CIM-Plate 16 by Agilent Technologies. Select Science. 2022. https://www.selectscience.net/products/cim-plate-16/?prodID=203763. Accessed 11 Apr 2022.