Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Balkwill FR. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer. 2015. https://doi.org/10.1038/nrc4019.
Article
Google Scholar
Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Ashworth A, et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 2008;451(7182):1111–5. https://doi.org/10.1038/nature06548.
Article
CAS
Google Scholar
Etemadmoghadam D, Au-Yeung G, Wall M, Mitchell C, Kansara M, Loehrer E, Bowtell DD, et al. Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer. Clin Cancer Res. 2013;19(21):5960–71. https://doi.org/10.1158/1078-0432.CCR-13-1337.
Article
CAS
Google Scholar
Getz G, Gabriel SB, Cibulskis K, Lander E, Sivachenko A, Sougnez C, Levine DA, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. https://doi.org/10.1038/nature12113.
Article
CAS
Google Scholar
Boggess JF, Kilgore JE, Tran AQ. Uterine cancer. Abeloff’s Clin Oncol. 2021. https://doi.org/10.1016/B978-0-323-47674-4.00085-2.
Article
Google Scholar
The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15. https://doi.org/10.1038/nature10166.
Article
CAS
Google Scholar
Konstantinopoulos PA, Waggoner S, Vidal GA, Mita M, Moroney JW, Holloway R, Munster P, et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. 2019;5(8):1141–9. https://doi.org/10.1001/JAMAONCOL.2019.1048.
Article
Google Scholar
Vanderstichele A, Van Nieuwenhuysen E, Han S, Concin N, Van Gorp T, Berteloot P, Neven P, Busschaert P, Lambrechts D, Vergote I. Randomized phase II CLIO study on olaparib monotherapy versus chemotherapy in platinum-resistant ovarian cancer. J Clin Oncol. 2019;37(15):5507–5507. https://doi.org/10.1200/JCO.2019.37.15_SUPPL.5507.
Article
Google Scholar
Hardesty M, Krivak T, Wright G, Hamilton E, Fleming E, Belotte J, Richardson D, et al. Phase II OVARIO study of niraparib + bevacizumab therapy in advanced ovarian cancer following front-line platinum-based chemotherapy with bevacizumab. Gynecol Oncol. 2021;162:S17. https://doi.org/10.1016/S0090-8258(21)00679-X.
Article
Google Scholar
Mirza MR, Åvall Lundqvist E, Birrer MJ, dePont Christensen R, Nyvang GB, Malander S, Mäenpää JU, et al. Niraparib plus bevacizumab versus niraparib alone for platinum-sensitive recurrent ovarian cancer (NSGO-AVANOVA2/ENGOT-ov24): a randomised, phase 2, superiority trial. Lancet Oncol. 2019;20(10):1409–19. https://doi.org/10.1016/S1470-2045(19)30515-7.
Article
CAS
Google Scholar
Scott AJ, Jones JW, Orschell CM, Macvittie TJ, Kane MA, Ernst RK. Mass spectrometry imaging enriches biomarker discovery approaches with candidate mapping. Health Phys. 2014;106(1):120–8. https://doi.org/10.1097/HP.0b013e3182a4ec2f.
Article
CAS
Google Scholar
Mittal P, Condina MR, Klingler-Hoffmann M, Kaur G, Oehler MK, Sieber OM, Hoffmann P, et al. Cancer tissue classification using supervised machine learning applied to maldi mass spectrometry imaging. Cancers. 2021. https://doi.org/10.3390/cancers13215388.
Article
Google Scholar
Jones EA, Schmitz N, Waaijer CJF, Frese CK, Van Remoortere A, Van Zeijl RJM, McDonnell LA, et al. Imaging mass spectrometry-based molecular histology differentiates microscopically identical and heterogeneous tumors. J Proteome Res. 2013;12(4):1847–55. https://doi.org/10.1021/pr301190g.
Article
CAS
Google Scholar
Castellino S, Lareau NM, Groseclose MR. The emergence of imaging mass spectrometry in drugdiscovery and development: making a difference by drivingdecision making. J Mass Spectrom. 2021;56(8):1–17.
Article
Google Scholar
Siegel TP, Hamm G, Bunch J, Cappell J, Fletcher JS, Schwamborn K. Mass spectrometry imaging and integration with other imaging modalities for greater molecular understanding of biological tissues. Mol Imag Biol. 2018;20:888–901.
Article
Google Scholar
Eberlin LS, Margulis K, Planell-Mendez I, Zare RN, Tibshirani R, Longacre TA, Poultsides GA, et al. Pancreatic cancer surgical resection margins: molecular assessment by mass spectrometry imaging. PLoS Med. 2016. https://doi.org/10.1371/JOURNAL.PMED.1002108.
Article
Google Scholar
Mittal P, Klingler-Hoffmann M, Arentz G, Winderbaum L, Lokman NA, Zhang C, Hoffmann P, et al. Lymph node metastasis of primary endometrial cancers: associated proteins revealed by MALDI imaging. Proteomics. 2016;16(11–12):1793–801. https://doi.org/10.1002/PMIC.201500455.
Article
CAS
Google Scholar
Mittal P, Price ZK, Lokman NA, Ricciardelli C, Oehler MK, Klingler-Hoffmann M, Hoffmann P. Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) for monitoring of drug response in primary cancer spheroids. Proteomics. 2019. https://doi.org/10.1002/PMIC.201900146.
Article
Google Scholar
Erlmeier F, Sun N, Shen J, Feuchtinger A, Buck A, Prade VM, Walch A, et al. MALDI mass spectrometry imaging-prognostic pathways and metabolites for renal cell carcinomas. Cancers. 2022. https://doi.org/10.3390/CANCERS14071763.
Article
Google Scholar
el Ayed M, Bonnel D, Longuespée R, Castellier C, Franck J, Vergara D, Salzet M, et al. MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers. Med Sci Monit. 2010;16(8):233–45.
Google Scholar
Badrick T. Evidence-based laboratory medicine. Clin Biochem Rev. 2013;34:43–6.
Google Scholar
Califf RM. Biomarker definitions and their applications. Exp Biol Med. 2018;243(3):213–21. https://doi.org/10.1177/1535370217750088.
Article
CAS
Google Scholar
Karley D, Gupta D, Tiwari A. Biomarker for cancer: a great promise for future. World J Oncol. 2011;2(4):151–7. https://doi.org/10.4021/wjon352w.
Article
CAS
Google Scholar
Dória ML, McKenzie JS, Mroz A, Phelps DL, Speller A, Rosini F, Takats Z, et al. Epithelial ovarian carcinoma diagnosis by desorption electrospray ionization mass spectrometry imaging. Sci Rep. 2016;6(39219):1–11. https://doi.org/10.1038/srep39219.
Article
CAS
Google Scholar
Sans M, Gharpure K, Tibshirani R, Zhang J, Liang L, Liu J, Eberlin LS, et al. Metabolic markers and statistical prediction of serous ovarian cancer aggressiveness by ambient ionization mass spectrometry imaging. Can Res. 2017;77(11):2903–13. https://doi.org/10.1158/0008-5472.CAN-16-3044.
Article
CAS
Google Scholar
Briggs MT, Condina MR, Ho YY, Everest-Dass AV, Mittal P, Kaur G, Oehler MK, Packer NH, Hoffmann P. MALDI mass spectrometry imaging of early- and late-stage serous ovarian cancer tissue reveals stage-specific N-glycans. Proteomics. 2019;1800482:1–11. https://doi.org/10.1002/pmic.201800482.
Article
CAS
Google Scholar
Kassuhn W, Klein O, Darb-Esfahani S, Lammert H, Handzik S, Taube ET, Braicu EI, et al. Classification of molecular subtypes of high-grade serous ovarian cancer by maldi-imaging. Cancers. 2021;13(7):1–13. https://doi.org/10.3390/cancers13071512.
Article
CAS
Google Scholar
Holzlechner M, Eugenin E, Prideaux B. Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer. Cancer Rep. 2019. https://doi.org/10.1002/cnr2.1229.
Article
Google Scholar
Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure molecular imaging mass spectrometry. Methods Mol Biol. 2010;656(21):159–71. https://doi.org/10.1007/978-1-60761-746-4_9.
Article
CAS
Google Scholar
Sarsby J. Liquid micro-junction surface sampling and MALDI imaging of small and large molecules in human liver disease. Sch Chem. 2016;327.
Sampson JS, Hawkridge AM, Muddiman DC. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom. 2006;17(12):1712–6. https://doi.org/10.1016/j.jasms.2006.08.003.
Article
CAS
Google Scholar
Kriegsmann M, Zgorzelski C, Casadonte R, Schwamborn K, Muley T, Winter H, Kriegsmann K, et al. Mass spectrometry imaging for reliable and fast classification of non-small cell lung cancer subtypes. Cancers. 2020;12(9):1–14. https://doi.org/10.3390/CANCERS12092704.
Article
Google Scholar
Mittal P, Briggs M, Klingler-Hoffmann M, Kaur G, Packer NH, Oehler MK, Hoffmann P. Altered N-linked glycosylation in endometrial cancer. Anal Bioanal Chem. 2021;413(10):2721–33. https://doi.org/10.1007/s00216-020-03039-z.
Article
CAS
Google Scholar
Klein O. MALDI-Imaging for classification of epithelial ovarian cancer histotypes from a tissue microarray using machine learning methods. Proteomics Clin Appl. 2018. https://doi.org/10.1002/prca.201700181.This.
Article
Google Scholar
Schwamborn K. The importance of histology and pathology in mass spectrometry imaging. Adv Cancer Res. 2017;134:1–26. https://doi.org/10.1016/BS.ACR.2016.11.001.
Article
CAS
Google Scholar
Abu Sammour D, Marsching C, Geisel A, Erich K, Schulz S, Ramallo Guevara C, Hopf C, et al. Quantitative mass spectrometry imaging reveals mutation status-independent lack of imatinib in liver metastases of gastrointestinal stromal tumors. Sci Rep. 2019. https://doi.org/10.1038/S41598-019-47089-5.
Article
Google Scholar
Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL, Santagata S, Agar NYR, et al. Classifying human brain tumors by lipid imaging with mass spectrometry. Can Res. 2012;72(3):645–54. https://doi.org/10.1158/0008-5472.CAN-11-2465/650094/AM/CLASSIFYING-HUMAN-BRAIN-TUMORS-BY-LIPID-IMAGING.
Article
CAS
Google Scholar
Lou S, Balluff B, de Graaff MA, Cleven AH, Briaire-de Bruijn I, Bovée JV, McDonnell LA. High-grade sarcoma diagnosis and prognosis: biomarker discovery by mass spectrometry imaging. Proteomics. 2016;16(11–12):1802–13. https://doi.org/10.1002/PMIC.201500514.
Article
CAS
Google Scholar
Zhang C, Arentz G, Winderbaum L, Lokman NA, Klingler-Hoffmann M, Mittal P, Hoffmann P, et al. MALDI mass spectrometry imaging reveals decreased CK5 levels in vulvar squamous cell carcinomas compared to the precursor lesion differentiated vulvar intraepithelial neoplasia. Int J Mol Sci. 2016;17(7):1088. https://doi.org/10.3390/IJMS17071088.
Article
Google Scholar
Mittal P, Klingler-Hoffmann M, Arentz G, Winderbaum L, Kaur G, Anderson L, Oehler MK, et al. Annexin A2 and alpha actinin 4 expression correlates with metastatic potential of primary endometrial cancer. Biochim Biophys Acta Proteins Proteom. 2017;1865(7):846–57. https://doi.org/10.1016/j.bbapap.2016.10.010.
Article
CAS
Google Scholar
Pietkiewicz D, Horała A, Plewa S, Jasiński P, Nowak-Markwitz E, Kokot ZJ, Matysiak J. MALDI-MSI—a step forward in overcoming the diagnostic challenges in ovarian tumors. Int J Environ Res Public Health. 2020;17(20):1–13. https://doi.org/10.3390/ijerph17207564.
Article
Google Scholar
Zhang H, Shi X, Vu NQ, Li G, Li Z, Shi Y, Li L, et al. On-tissue derivatization with Girard’s reagent P enhances N-glycan signals for formalin-fixed paraffin-embedded tissue sections in MALDI mass spectrometry imaging. Anal Chem. 2020;92(19):13361–8. https://doi.org/10.1021/acs.analchem.0c02704.
Article
CAS
Google Scholar
Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH. N -glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian cancer tissues. Mol Cell Proteom. 2016;15(9):3003–16.
Article
CAS
Google Scholar
Longuespée R, et al. Proteomic analyses of serous and endometrioid epithelial ovarian cancers: cases studies :molecular insights of a possible histological etiology of serous ovarian cancer. Proteom Clin Appl. 2013. https://doi.org/10.1002/prca.201200079.
Article
Google Scholar
Delcourt V, Franck J, Leblanc E, Narducci F, Robin YM, Gimeno JP, Fournier I, et al. Combined mass spectrometry imaging and top-down microproteomics reveals evidence of a hidden proteome in ovarian cancer. EBioMedicine. 2017;21:55–64. https://doi.org/10.1016/j.ebiom.2017.06.001.
Article
Google Scholar
Meding S, Martin K, Gustafsson OJR, Eddes JS, Hack S, Oehler MK, Hoffmann P. Tryptic peptide reference data sets for MALDI imaging mass spectrometry on formalin-fixed ovarian cancer tissues. J Proteome Res. 2013;12(1):308–15. https://doi.org/10.1021/pr300996x.
Article
CAS
Google Scholar
Schwamborn K. Discerning the primary carcinoma in malignant peritoneal and pleural effusions using imaging mass spectrometry—a feasibility study. Proteom Clin Appl. 2018. https://doi.org/10.1002/prca.201800064.This.
Article
Google Scholar
Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126(5):855–67. https://doi.org/10.1016/J.CELL.2006.08.019.
Article
CAS
Google Scholar
Saldova R, Wormald MR, Dwek RA, Rudd PM. Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis Markers. 2008;25(4–5):219–32. https://doi.org/10.1155/2008/601583.
Article
CAS
Google Scholar
Munkley J, Scott E. Targeting aberrant sialylation to treat cancer. Medicines. 2019;6(4):102. https://doi.org/10.3390/MEDICINES6040102.
Article
CAS
Google Scholar
Miyagi T, Takahashi K, Hata K, Shiozaki K, Yamaguchi K. Sialidase significance for cancer progression. Glycoconj J. 2012;29(8–9):567–77. https://doi.org/10.1007/S10719-012-9394-1.
Article
CAS
Google Scholar
González-González L, Alonso J. Periostin: a matricellular protein with multiple functions in cancer development and progression. Front Oncol. 2018. https://doi.org/10.3389/FONC.2018.00225.
Article
Google Scholar
Hu ZD, Wei TT, Yang M, Ma N, Tang QQ, Qin BD, Fu HT, Zhong RQ. Diagnostic value of osteopontin in ovarian cancer: a meta-analysis and systematic review. PLoS ONE. 2015. https://doi.org/10.1371/JOURNAL.PONE.0126444.
Article
Google Scholar
Olaniyan OT, Femi A, Iliya G, Ayobami D, Godam E, Olugbenga E, Chand Mali P, et al. Vitamin C suppresses ovarian pathophysiology in experimental polycystic ovarian syndrome. Pathophysiology. 2019;26(3–4):331–41. https://doi.org/10.1016/J.PATHOPHYS.2019.08.003.
Article
CAS
Google Scholar
Zhao T, Mu X, You Q. Succinate: an initiator in tumorigenesis and progression. Oncotarget. 2017;8(32):53819. https://doi.org/10.18632/ONCOTARGET.17734.
Article
Google Scholar
Gaude E, Frezza C. Defects in mitochondrial metabolism and cancer. Cancer Metab. 2014. https://doi.org/10.1186/2049-3002-2-10.
Article
Google Scholar
Wang LN, Tong SW, Hu HD, Ye F, Li SL, Ren H, Yang YX, et al. Quantitative proteome analysis of ovarian cancer tissues using a iTRAQ approach. J Cell Biochem. 2012;113(12):3762–72. https://doi.org/10.1002/JCB.24250.
Article
CAS
Google Scholar
Li M, Yin J, Mao N, Pan L. Upregulation of phosphorylated cofilin 1 correlates with taxol resistance in human ovarian cancer in vitro and in vivo. Oncol Rep. 2013;29(1):58–66. https://doi.org/10.3892/OR.2012.2078/HTML.
Article
Google Scholar
Lomnytska M, Dubrovska A, Hellman U, Volodko N, Souchelnytskyi S. Increased expression of cSHMT, Tbx3 and utrophin in plasma of ovarian and breast cancer patients. Int J Cancer. 2006;118(2):412–21. https://doi.org/10.1002/IJC.21332.
Article
CAS
Google Scholar
Waldemarson S, Krogh M, Alaiya A, Kirik U, Schedvins K, Auer G, James P, et al. Protein expression changes in ovarian cancer during the transition from benign to malignant. J Proteome Res. 2012;11(5):2876–89. https://doi.org/10.1021/PR201258Q/SUPPL_FILE/PR201258Q_SI_001.PDF.
Article
CAS
Google Scholar
Koensgen D, Mustea A, Klaman I, Sun P, Zafrakas M, Lichtenegger W, Sehouli J, et al. Expression analysis and RNA localization of PAI-RBP1 (SERBP1) in epithelial ovarian cancer: association with tumor progression. Gynecol Oncol. 2007;107(2):266–73. https://doi.org/10.1016/J.YGYNO.2007.06.023.
Article
CAS
Google Scholar
Kondo S, Lu Y, Debbas M, Lin AW, Sarosi I, Itie A, Thukral SK, et al. Characterization of cells and gene-targeted mice deficient for the p53-binding kinase homeodomain-interacting protein kinase 1 (HIPK1). Proc Natl Acad Sci USA. 2003;100(9):5431–6. https://doi.org/10.1073/PNAS.0530308100/ASSET/646A8220-CE1D-4B4E-A760-C5378340DD74/ASSETS/GRAPHIC/PQ0530308007.JPEG.
Article
CAS
Google Scholar
Liu Y, Han X, Gao B. Knockdown of S100A11 expression suppresses ovarian cancer cell growth and invasion. Exp Ther Med. 2015;9(4):1460. https://doi.org/10.3892/ETM.2015.2257.
Article
CAS
Google Scholar
Qin FX, Shao HY, Chen XC, Tan S, Zhang HJ, Miao ZY, Zhang L, et al. Knockdown of NPM1 by RNA interference inhibits cells proliferation and induces apoptosis in leukemic cell line. Int J Med Sci. 2011;8(4):287. https://doi.org/10.7150/IJMS.8.287.
Article
CAS
Google Scholar
Ahmad M, Attoub S, Singh MN, Martin FL, El-Agnaf OMA. Gamma-synuclein and the progression of cancer. FASEB J. 2007;21(13):3419–30. https://doi.org/10.1096/FJ.07-8379REV.
Article
CAS
Google Scholar
Huang C, Huang Z, Zhao X, Wang Y, Zhao H, Zhong Z, Wang L. Overexpression of high mobility group box 1 contributes to progressive clinicopathological features and poor prognosis of human bladder urothelial carcinoma. Onco Targets Ther. 2018;11:2111. https://doi.org/10.2147/OTT.S155745.
Article
CAS
Google Scholar
Hu X, Li D, Zhang W, Zhou J, Tang B, Li L. Matrix metalloproteinase-9 expression correlates with prognosis and involved in ovarian cancer cell invasion. Arch Gynecol Obstet. 2012;286(6):1537–43. https://doi.org/10.1007/S00404-012-2456-6.
Article
CAS
Google Scholar
Trojano G, Olivieri C, Tinelli R, Damiani GR, Pellegrino A, Cicinelli E. Conservative treatment in early stage endometrial cancer: a review. Acta Biomed. 2019;90(4):405. https://doi.org/10.23750/ABM.V90I4.7800.
Article
CAS
Google Scholar
Pinar G. Survival determinants in endometrial cancer patients: 5-years experience. Arch Nurs Pract Care. 2017. https://doi.org/10.17352/2581-4265.000019.
Article
Google Scholar
Zhang X, Wang Y, Qian Y, Wu X, Zhang Z, Liu X, Gu J, et al. Discovery of specific metastasis-related N-glycan alterations in epithelial ovarian cancer based on quantitative glycomics. PLoS ONE. 2014. https://doi.org/10.1371/JOURNAL.PONE.0087978.
Article
Google Scholar
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR, Richard Drake CR. Applications and continued evolution of glycan imaging mass spectrometry. Mass Spectrom Rev. 2021. https://doi.org/10.1002/MAS.21725.
Article
Google Scholar
Kulbe H, Klein O, Wu Z, Taube ET, Kassuhn W, Horst D, Braicu EI, et al. Discovery of prognostic markers for early-stage high-grade serous ovarian cancer by maldi-imaging. Cancers. 2020;12(8):1–14. https://doi.org/10.3390/cancers12082000.
Article
CAS
Google Scholar
Boskamp T, Lachmund D, Casadonte R, Hauberg-Lotte L, Kobarg JH, Kriegsmann J, Maass P. Using the chemical noise background in maldi mass spectrometry imaging for mass alignment and calibration. Anal Chem. 2020;92(1):1301–8. https://doi.org/10.1021/acs.analchem.9b04473.
Article
CAS
Google Scholar
Kawashima M, Tokiwa M, Nishimura T, Kawata Y, Sugimoto M, Kataoka TR, Toi M, et al. High-resolution imaging mass spectrometry combined with transcriptomic analysis identified a link between fatty acid composition of phosphatidylinositols and the immune checkpoint pathway at the primary tumour site of breast cancer. Br J Cancer. 2020;122(2):245–57. https://doi.org/10.1038/s41416-019-0662-8.
Article
CAS
Google Scholar
Cordero Hernandez Y, Boskamp T, Casadonte R, Hauberg-Lotte L, Oetjen J, Lachmund D, Maass P, et al. Targeted feature extraction in MALDI mass spectrometry imaging to discriminate proteomic profiles of breast and ovarian cancer. Proteom Clin Appl. 2019;13(1):1–21. https://doi.org/10.1002/prca.201700168.
Article
CAS
Google Scholar
Winderbaum L, Koch I, Mittal P, Hoffmann P. Classification of MALDI-MS imaging data of tissue microarrays using canonical correlation analysis-based variable selection. Proteomics. 2016;16(11–12):1731–5. https://doi.org/10.1002/pmic.201500451.
Article
CAS
Google Scholar
McDonnell LA, Römpp A, Balluff B, Heeren RMA, Albar JP, Andrén PE, Stoeckli M, et al. Discussion point: reporting guidelines for mass spectrometry imaging. Anal Bioanal Chem. 2015;407(8):2035–45. https://doi.org/10.1007/S00216-014-8322-6/FIGURES/5.
Article
CAS
Google Scholar
Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Bodenmiller B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11(4):417–22. https://doi.org/10.1038/NMETH.2869.
Article
CAS
Google Scholar
Ali HR, Jackson HW, Zanotelli VRT, Danenberg E, Fischer JR, Bardwell H, Bodenmiller B, et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nature Cancer. 2020;1(2):163–75. https://doi.org/10.1038/S43018-020-0026-6.
Article
CAS
Google Scholar
Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, Nolan GP, et al. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014;20(4):436–42. https://doi.org/10.1038/nm.3488.
Article
CAS
Google Scholar
Rost S, Giltnane J, Bordeaux JM, Hitzman C, Koeppen H, Liu SD. Multiplexed ion beam imaging analysis for quantitation of protein expresssion in cancer tissue sections. Lab Investig. 2017;97(8):992–1003. https://doi.org/10.1038/labinvest.2017.50.
Article
CAS
Google Scholar
Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, Angelo M, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174(6):1373. https://doi.org/10.1016/J.CELL.2018.08.039.
Article
CAS
Google Scholar
Buchberger AR, DeLaney K, Johnson J, Li L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2018;90(1):240–65. https://doi.org/10.1021/ACS.ANALCHEM.7B04733.
Article
CAS
Google Scholar
Nguyen SN, Liyu AV, Chu RK, Anderton CR, Laskin J. Constant-distance mode nanospray desorption electrospray ionization mass spectrometry imaging of biological samples with complex topography. Anal Chem. 2017;89(2):1131–7. https://doi.org/10.1021/ACS.ANALCHEM.6B03293.
Article
CAS
Google Scholar
Bartels B, Kulkarni P, Danz N, Böcker S, Saluz HP, Svatoš A. Mapping metabolites from rough terrain: laser ablation electrospray ionization on non-flat samples. RSC Adv. 2017;7(15):9045–50. https://doi.org/10.1039/C6RA26854D.
Article
CAS
Google Scholar
Yagnik G, Liu Z, Rothschild KJ, Lim MJ. Highly multiplexed immunohistochemical MALDI-MS imaging of biomarkers in tissues. J Am Soc Mass Spectrom. 2021;32(4):977–88. https://doi.org/10.1021/JASMS.0C00473/SUPPL_FILE/JS0C00473_SI_002.PDF.
Article
CAS
Google Scholar
Morrison LE, Lefever MR, Behman LJ, Leibold T, Roberts EA, Horchner UB, Bauer DR. Brightfield multiplex immunohistochemistry with multispectral imaging. Lab Investig. 2020;100(8):1124–36. https://doi.org/10.1038/s41374-020-0429-0.
Article
Google Scholar
González-Martín A, Pothuri B, Vergote I, DePont Christensen R, Graybill W, Mirza MR, Monk BJ, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2019;381(25):2391–402. https://doi.org/10.1056/NEJMOA1910962.
Article
Google Scholar
Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, Matulonis UA, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375(22):2154–64. https://doi.org/10.1056/NEJMOA1611310.
Article
CAS
Google Scholar
Davies H, Glodzik D, Morganella S, Yates LR, Staaf J, Zou X, Nik-Zainal S, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017;23(4):517–25. https://doi.org/10.1038/NM.4292.
Article
CAS
Google Scholar
Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, Harter P, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381(25):2416–28. https://doi.org/10.1056/NEJMoa1911361.
Article
CAS
Google Scholar
McMullen M, Madariaga A, Lheureux S. New approaches for targeting platinum-resistant ovarian cancer. Semin Cancer Biol. 2021;77:167–81. https://doi.org/10.1016/J.SEMCANCER.2020.08.013.
Article
CAS
Google Scholar
Matulonis U, Lorusso D, Oaknin A, Pignata S, Denys H, Colombo N, Coleman R, et al. Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study (LBA 4). Gynecol Oncol. 2022;166:S50. https://doi.org/10.1016/S0090-8258(22)01297-5.
Article
Google Scholar
O’Malley DM, Matulonis UA, Birrer MJ, Castro CM, Gilbert L, Vergote I, Moore KN, et al. Phase Ib study of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol. 2020;157(2):379–85. https://doi.org/10.1016/j.ygyno.2020.01.037.
Article
CAS
Google Scholar
Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Bowtell DDL, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94. https://doi.org/10.1038/NATURE14410.
Article
CAS
Google Scholar
Toss A, Tomasello C, Razzaboni E, Contu G, Grandi G, Cagnacci A, Cortesi L, et al. Hereditary ovarian cancer: not only BRCA 1 and 2 genes. Biomed Res Int. 2015. https://doi.org/10.1155/2015/341723.
Article
Google Scholar
Oaknin A, Tinker AV, Gilbert L, Samouëlian V, Mathews C, Brown J, Sabatier R, et al. Clinical activity and safety of the anti-programmed death 1 monoclonal antibody dostarlimab for patients with recurrent or advanced mismatch repair-deficient endometrial cancer: a nonrandomized phase 1 clinical trial. JAMA Oncol. 2020;6(11):1766–72. https://doi.org/10.1001/JAMAONCOL.2020.4515.
Article
Google Scholar
Hong R, Liu W, Delair D, Razavian N, Fenyö D. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Rep Med. 2021;2: 100400. https://doi.org/10.1016/j.xcrm.2021.100400.
Article
CAS
Google Scholar