Harris AL, Hochhauser D: Mechanisms of multidrug resistance in cancer treatment. Acta oncologica (Stockholm, Sweden). 1992, 31 (2): 205-213. 10.3109/02841869209088904.
Article
CAS
Google Scholar
Jamroziak K, Robak T: Pharmacogenomics of MDR1/ABCB1 gene: the influence on risk and clinical outcome of haematological malignancies. Hematology (Amsterdam, Netherlands). 2004, 9 (2): 91-105.
CAS
Google Scholar
Leighton JC, Goldstein LJ: P-glycoprotein in adult solid tumors. Expression and prognostic significance. Hematology/oncology clinics of North America. 1995, 9 (2): 251-273.
PubMed
Google Scholar
Tredan O, Galmarini CM, Patel K, Tannock IF: Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute. 2007, 99 (19): 1441-1454. 10.1093/jnci/djm135.
Article
CAS
PubMed
Google Scholar
Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N: Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer science. 2003, 94 (1): 15-21. 10.1111/j.1349-7006.2003.tb01345.x.
Article
CAS
PubMed
Google Scholar
Yague E, Arance A, Kubitza L, O'Hare M, Jat P, Ogilvie CM, Hart IR, Higgins CF, Raguz S: Ability to acquire drug resistance arises early during the tumorigenesis process. Cancer research. 2007, 67 (3): 1130-1137. 10.1158/0008-5472.CAN-06-2574.
Article
PubMed
Google Scholar
Gottesman MM, Fojo T, Bates SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nature reviews. 2002, 2 (1): 48-58. 10.1038/nrc706.
CAS
PubMed
Google Scholar
Chinn LW, Kroetz DL: ABCB1 pharmacogenetics: progress, pitfalls, and promise. Clinical pharmacology and therapeutics. 2007, 81 (2): 265-269. 10.1038/sj.clpt.6100052.
Article
CAS
PubMed
Google Scholar
Gillet JP, Efferth T, Remacle J: Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochimica et biophysica acta. 2007, 1775 (2): 237-262.
CAS
PubMed
Google Scholar
Kimura Y, Morita S, Matsuo M, Ueda K: Mechanism of multidrug recognition by MDR1/ABCB1. Cancer science. 2007, 98 (9): 1303-1310. 10.1111/j.1349-7006.2007.00538.x.
Article
CAS
PubMed
Google Scholar
Buys TP, Chari R, Lee EH, Zhang M, MacAulay C, Lam S, Lam WL, Ling V: Genetic changes in the evolution of multidrug resistance for cultured human ovarian cancer cells. Genes, chromosomes & cancer. 2007, 46 (12): 1069-1079.
Article
CAS
Google Scholar
Lemos C, Jansen G, Peters GJ: Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. British journal of cancer. 2008, 98 (5): 857-862. 10.1038/sj.bjc.6604213.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fojo T: Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat. 2007, 10 (1-2): 59-67. 10.1016/j.drup.2007.02.002.
Article
CAS
PubMed
Google Scholar
Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M: Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007, 10 (1-2): 13-29. 10.1016/j.drup.2007.01.003.
Article
CAS
PubMed
Google Scholar
Mimeault M, Hauke R, Batra SK: Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clinical pharmacology and therapeutics. 2008, 83 (5): 673-691. 10.1038/sj.clpt.6100296.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cairns R, Papandreou I, Denko N: Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res. 2006, 4 (2): 61-70. 10.1158/1541-7786.MCR-06-0002.
Article
CAS
PubMed
Google Scholar
Guppy M: The hypoxic core: a possible answer to the cancer paradox. Biochemical and biophysical research communications. 2002, 299 (4): 676-680. 10.1016/S0006-291X(02)02710-9.
Article
CAS
PubMed
Google Scholar
Vaupel P: Tumor microenvironmental physiology and its implications for radiation oncology. Seminars in radiation oncology. 2004, 14 (3): 198-206. 10.1016/j.semradonc.2004.04.008.
Article
PubMed
Google Scholar
Campbell RB, Ying B, Kuesters GM, Hemphill R: Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics. Journal of pharmaceutical sciences. 2009, 98 (2): 411-429. 10.1002/jps.21458.
Article
CAS
PubMed
Google Scholar
Preise D, Mazor O, Koudinova N, Liscovitch M, Scherz A, Salomon Y: Bypass of tumor drug resistance by antivascular therapy. Neoplasia (New York, NY). 2003, 5 (6): 475-480.
Article
CAS
Google Scholar
Cosse JP, Michiels C: Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anti-cancer agents in medicinal chemistry. 2008, 8 (7): 790-797.
Article
CAS
PubMed
Google Scholar
Harris AL: Hypoxia--a key regulatory factor in tumour growth. Nature reviews. 2002, 2 (1): 38-47. 10.1038/nrc704.
CAS
PubMed
Google Scholar
Rankin EB, Giaccia AJ: The role of hypoxia-inducible factors in tumorigenesis. Cell death and differentiation. 2008, 15 (4): 678-685. 10.1038/cdd.2008.21.
Article
PubMed Central
CAS
PubMed
Google Scholar
Semenza GL: Targeting HIF-1 for cancer therapy. Nature reviews. 2003, 3 (10): 721-732. 10.1038/nrc1187.
CAS
PubMed
Google Scholar
Depping R, Steinhoff A, Schindler SG, Friedrich B, Fagerlund R, Metzen E, Hartmann E, Kohler M: Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. Biochimica et biophysica acta. 2008, 1783 (3): 394-404. 10.1016/j.bbamcr.2007.12.006.
Article
CAS
PubMed
Google Scholar
Brahimi-Horn MC, Chiche J, Pouyssegur J: Hypoxia and cancer. Journal of molecular medicine (Berlin, Germany). 2007, 85 (12): 1301-1307.
Article
Google Scholar
Hockel M, Vaupel P: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. Journal of the National Cancer Institute. 2001, 93 (4): 266-276. 10.1093/jnci/93.4.266.
Article
CAS
PubMed
Google Scholar
Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M: Tumor hypoxia: a target for selective cancer therapy. Cancer science. 2003, 94 (12): 1021-1028. 10.1111/j.1349-7006.2003.tb01395.x.
Article
CAS
PubMed
Google Scholar
Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D: Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer treatment reviews. 2003, 29 (4): 297-307. 10.1016/S0305-7372(03)00003-3.
Article
CAS
PubMed
Google Scholar
Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M: Induction of HIF-1alpha in response to hypoxia is instantaneous. Faseb J. 2001, 15 (7): 1312-1314.
CAS
PubMed
Google Scholar
Nanduri J, Yuan G, Kumar GK, Semenza GL, Prabhakar NR: Transcriptional responses to intermittent hypoxia. Respiratory physiology & neurobiology. 2008, 164 (1-2): 277-281.
Article
CAS
Google Scholar
Semenza GL: Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB life. 2008, 60 (9): 591-597. 10.1002/iub.93.
Article
CAS
PubMed
Google Scholar
Liu H, Savaraj N, Priebe W, Lampidis TJ: Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochemical pharmacology. 2002, 64 (12): 1745-1751. 10.1016/S0006-2952(02)01456-9.
Article
CAS
PubMed
Google Scholar
Lu H, Forbes RA, Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. The Journal of biological chemistry. 2002, 277 (26): 23111-23115. 10.1074/jbc.M202487200.
Article
CAS
PubMed
Google Scholar
Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC, Thompson CB: The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes & development. 2007, 21 (9): 1037-1049.
Article
CAS
Google Scholar
Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ: Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia (New York, NY). 2005, 7 (4): 324-330.
Article
CAS
Google Scholar
Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nature reviews. 2004, 4 (11): 891-899. 10.1038/nrc1478.
CAS
PubMed
Google Scholar
Semenza G: Signal transduction to hypoxia-inducible factor 1. Biochemical pharmacology. 2002, 64 (5-6): 993-998. 10.1016/S0006-2952(02)01168-1.
Article
CAS
PubMed
Google Scholar
Lopez-Lazaro M: The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen?. Anti-cancer agents in medicinal chemistry. 2008, 8 (3): 305-312. 10.2174/187152008783961932.
Article
CAS
PubMed
Google Scholar
Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS: Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001, 21 (10): 3436-3444. 10.1128/MCB.21.10.3436-3444.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Semenza GL: HIF-1 mediates the Warburg effect in clear cell renal carcinoma. Journal of bioenergetics and biomembranes. 2007, 39 (3): 231-234. 10.1007/s10863-007-9081-2.
Article
CAS
PubMed
Google Scholar
Altenberg B, Greulich KO: Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004, 84 (6): 1014-1020. 10.1016/j.ygeno.2004.08.010.
Article
CAS
PubMed
Google Scholar
Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134 (5): 703-707. 10.1016/j.cell.2008.08.021.
Article
CAS
PubMed
Google Scholar
Warburg O: On respiratory impairment in cancer cells. Science (New York, NY). 1956, 124 (3215): 269-270.
CAS
Google Scholar
Young CD, Anderson SM: Sugar and fat - that's where it's at: metabolic changes in tumors. Breast Cancer Res. 2008, 10 (1): 202-10.1186/bcr1852.
Article
PubMed Central
PubMed
Google Scholar
Schumacker PT: Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer cell. 2006, 10 (3): 175-176. 10.1016/j.ccr.2006.08.015.
Article
CAS
PubMed
Google Scholar
Pedersen PL: Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. Journal of bioenergetics and biomembranes. 2007, 39 (3): 211-222. 10.1007/s10863-007-9094-x.
Article
CAS
PubMed
Google Scholar
Ellison G, Klinowska T, Westwood RF, Docter E, French T, Fox JC: Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol. 2002, 55 (5): 294-299. 10.1136/mp.55.5.294.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cuezva JM, Ortega AD, Willers I, Sánchez-Cenizo L, Aldea M, Sánchez-Aragó M: The tumor suppressor function of mitochondria: Translation into the clinics. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2009, 1792 (12): 1145-1150. 10.1016/j.bbadis.2009.01.006.
Article
CAS
Google Scholar
Smaldone MC, Maranchie JK: Clinical implications of hypoxia inducible factor in renal cell carcinoma. Urologic oncology. 2009, 27 (3): 238-245.
Article
CAS
PubMed
Google Scholar
Ohta S: Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene. 2006, 25 (34): 4768-4776. 10.1038/sj.onc.1209602.
Article
CAS
PubMed
Google Scholar
Pelicano H, Martin DS, Xu RH, Huang P: Glycolysis inhibition for anticancer treatment. Oncogene. 2006, 25 (34): 4633-4646. 10.1038/sj.onc.1209597.
Article
CAS
PubMed
Google Scholar
Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer cell. 2009, 15 (3): 232-239. 10.1016/j.ccr.2009.01.021.
Article
PubMed Central
CAS
PubMed
Google Scholar
Loges S, Mazzone M, Hohensinner P, Carmeliet P: Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer cell. 2009, 15 (3): 167-170. 10.1016/j.ccr.2009.02.007.
Article
CAS
PubMed
Google Scholar
Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009, 15 (3): 220-231. 10.1016/j.ccr.2009.01.027.
Article
PubMed Central
CAS
PubMed
Google Scholar