Mwangi RW, Macharia JM, Wagara IN, Bence RL. The antioxidant potential of different edible and medicinal mushrooms. Biomed Pharmacother. 2022;147: 112621. https://doi.org/10.1016/j.biopha.2022.112621.
Article
CAS
PubMed
Google Scholar
Zhang A, Li X, Xing C, Yang J, Sun P. Antioxidant activity of polysaccharide extracted from Pleurotus eryngii using response surface methodology. Int J Biol Macromol. 2014;65:28–32. https://doi.org/10.1016/j.ijbiomac.2014.01.013.
Article
CAS
PubMed
Google Scholar
Yap HYY, Muria-Gonzalez MJ, Kong BH, Stubbs KA, Tan CS, Ng ST, Tan NH, Solomon PS, Fung SY, Chooi YH. Heterologous expression of cytotoxic sesquiterpenoids from the medicinal mushroom Lignosus rhinocerotis in yeast. Microb Cell Fact. 2017;16:1–13. https://doi.org/10.1186/s12934-017-0713-x.
Article
CAS
Google Scholar
Halder S, Modak P, Sarkar BK, Das A, Sarkar AP, Chowdhury AR, Kundu SK. Traditionally used medicinal plants with anticancer effect: a review. Int J Pharm Sci Rev Res. 2020;65(2020):1–13. https://doi.org/10.47583/ijpsrr.2020.v65i01.001.
Article
CAS
Google Scholar
Parmar S, Gangwal A. The antimicrobial activity of essential oil and plant extracts of woodfordia fruticose. Sch Res Libr. 2011;2:373–83.
Google Scholar
Arnold CN, Goel A, Blum HE, Boland CR. Molecular of colorectal cancer: Implications for molecular diagnosis. Cancer. 2005;104:2035–47. https://doi.org/10.1002/cncr.21462.
Article
CAS
PubMed
Google Scholar
Hashemzaei M, Far AD, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, Sadegh SE, Tsarouhas K, Kouretas D, Tzanakakis G, Nikitovic D, Anisimov NY, Spandidos DA, Tsatsakis AM, Rezaee R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol Rep. 2017;38:819–28. https://doi.org/10.3892/or.2017.5766.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macharia JM, Mwangi RW, Rozmann N, Zsolt K, Varjas T, Uchechukwu PO, Wagara IN, Raposa BL. Biomedicine & pharmacotherapy medicinal plants with anti-colorectal cancer bioactive compounds: potential game-changers in colorectal cancer management. Biomed Pharmacother. 2022;153: 113383. https://doi.org/10.1016/j.biopha.2022.113383.
Article
CAS
PubMed
Google Scholar
Schmoll HJ, Van Cutsem E, Stein A, Valentini V, Glimelius B, Haustermans K, Nordlinger B, Van de Velde CJ, Balmana J, Regula J, Nagtegaal ID, Beets-Tan RG, Arnold D, Ciardiello F, Hoff P, Kerr D, Köhne CH, Labianca R, Price T, Scheithauer W, Sobrero A, Tabernero J, Aderka D, Barroso S, Bodoky G, Douillard JY, El Ghazaly H, Gallardo J, Garin A, Glynne-jones R, Jordan K, Meshcheryakov A, Papamichail D, Pfeiffer P, Souglakos I, Turhal S, Cervantes A. ESMO consensus guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol. 2012;23(2012):2479–516. https://doi.org/10.1093/annonc/mds236.
Article
CAS
PubMed
Google Scholar
Awuchi CG. Medicinal plants: the medical, food, and nutritional biochemistry and uses. Int J Adv Acad Res. 2019;5:2488–9849.
Google Scholar
Waheed RM, Aleksandra N, Matthias R. Scientific evaluation of dietary factors in cancer. J Nutr Med Diet Care. 2018;4:1–13. https://doi.org/10.23937/2572-3278.1510029.
Article
CAS
Google Scholar
Ziegler R, Hoover R, Pike M, Hildesheim A, Nomura A, West D, Wu-Williams A, Kolonel L, Horn-Ross P, Rosenthal J, Hyer M. Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst Oxford Academic. 1993;85:1819–27.
Article
CAS
Google Scholar
Michels KB. The role of nutrition in cancer development and prevention. Int J Cancer. 2005;114:163–5. https://doi.org/10.1002/ijc.20662.
Article
CAS
PubMed
Google Scholar
Singletary K, Milner J. Diet, autophagy, and cancer: a review cancer epidemiol. Biomarkers Prev. 2008;17:1596–610. https://doi.org/10.1158/1055-9965.EPI-07-2917.
Article
CAS
Google Scholar
Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. Micronutrient synergy-a new tool in effective control of metastasis and other key mechanisms of cancer. Cancer Metastasis Rev. 2010;29:529–42. https://doi.org/10.1007/s10555-010-9244-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waheed RM, Bilwa B, Aleksandra N, Matthias R. A novel nutrient mixture induces apoptosis in human ovarian and cervical cancer cells. J Cerv Cancer Res. 2018;2:10–7. https://doi.org/10.36959/749/520.
Article
Google Scholar
Macharia JM, Mwangi RW, Rozmann N, Wagara IN, Kaposztas Z, Varjas T, Mathenge J, Bence RL. A systematic review of selected plants and their metabolites with anticolorectal cancer effects. Phytomedicine Plus. 2022;2: 100332. https://doi.org/10.1016/j.phyplu.2022.100332.
Article
Google Scholar
Liang PS, Chen TY, Giovannucci E. Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int J Cancer. 2009;124:2406–15. https://doi.org/10.1002/ijc.24191.
Article
CAS
PubMed
Google Scholar
Porta M, Crous-Bou M, Wark PA, Vineis P, Real FX, Malats N, Kampman E. Cigarette smoking and K-ras mutations in pancreas, lung and colorectal adenocarcinomas: etiopathogenic similarities, differences and paradoxes. Mutat Res - Rev Mutat Res. 2009;682:83–93. https://doi.org/10.1016/j.mrrev.2009.07.003.
Article
CAS
Google Scholar
Katzke VA, Kaaks R, Kühn T. Lifestyle and cancer risk. Cancer J (United States). 2015;21:104–10. https://doi.org/10.1097/PPO.0000000000000101.
Article
Google Scholar
Parkin DM, Boyd L, Walker LC. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer. 2011;105:S77–81. https://doi.org/10.1038/bjc.2011.489.
Article
PubMed
PubMed Central
Google Scholar
Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2015;7:17–44. https://doi.org/10.3390/nu7010017.
Article
CAS
Google Scholar
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20. https://doi.org/10.1126/science.1104816.
Article
CAS
PubMed
Google Scholar
Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81:230–42. https://doi.org/10.1093/ajcn/81.1.230s.
Article
Google Scholar
Selma MV, Espín JC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: Role in human health. J Agric Food Chem. 2009;57:6485–501. https://doi.org/10.1021/jf902107d.
Article
CAS
PubMed
Google Scholar
Windey K, de Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012;56:184–96. https://doi.org/10.1002/mnfr.201100542.
Article
CAS
PubMed
Google Scholar
Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27. PMID: 29431951.
Khan I, Huang G, Ang Li X, Liao W, Leong WK, Xia W, Bian X, Wu J, Hsiao WLW. Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in ApcMin/+ mice. Pharmacol Res. 2019. https://doi.org/10.1016/j.phrs.2019.104448.
Article
PubMed
Google Scholar
Colussi D, Brandi G, Bazzoli F, Ricciardiello L. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci. 2013;14:16365–85. https://doi.org/10.3390/ijms140816365.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carvalho C, Marinho A, Leal B, Bettencourt A, Boleixa D, Almeida I, Farinha F, Costa PP, Vasconcelos C, Silva BM. Association between vitamin D receptor (VDR) gene polymorphisms and systemic lupus erythematosus in Portuguese patients. Lupus. 2015;24:846–53. https://doi.org/10.1177/0961203314566636.
Article
CAS
PubMed
Google Scholar
Lucas C, Barnich N, Thi H, Nguyen T. Microbiota, inflammation and colorectal cancer. Int J Mol Sci. 2018;8:1–27. https://doi.org/10.3390/ijms18061310.
Article
CAS
Google Scholar
Wang G, Feng C, Chu S. Toosendanin inhibits growth and induces apoptosis in colorectal cancer cells through suppression of AKT/GSK-3 β/β -catenin pathway. Int J Oncol. 2015;47:1767–74. https://doi.org/10.3892/ijo.2015.3157.
Article
CAS
PubMed
Google Scholar
Faugeras L, Dili A, Druez A, Krug B, Decoster C, D’Hondt L. Treatment options for metastatic colorectal cancer in patients with liver dysfunction due to malignancy. Crit Rev Oncol Hematol. 2017;115:59–66. https://doi.org/10.1016/j.critrevonc.2017.03.029.
Article
CAS
PubMed
Google Scholar
Martínez L, Jongberg S, Ros G, Skibsted LH, Nieto G. Plant derived ingredients rich in nitrates or phenolics for protection of pork against protein oxidation. Food Res Int. 2020;129: 108789. https://doi.org/10.1016/j.foodres.2019.108789.
Article
CAS
PubMed
Google Scholar
Yang X, Yan F, Huang S, Fu C. Antioxidant activities of fractions from longan pericarps. Food Sci Technol. 2014;34:341–5. https://doi.org/10.1590/S0101-20612014005000034.
Article
Google Scholar
Kozarski M, Klaus A, Vunduk J, Zizak Z, Niksic M, Jakovljevic D, Vrvic MM, Van Griensven LJLD. Nutraceutical properties of the methanolic extract of edible mushroom Cantharellus cibarius (Fries): primary mechanisms. Food Funct. 2015;6:1875–86. https://doi.org/10.1039/c5fo00312a.
Article
CAS
PubMed
Google Scholar
Loria-Kohen V, Lourenço-Nogueira T, Espinosa-Salinas I, Marín FR, Soler-Rivas C, de Molina AR. Nutritional and functional properties of edible mushrooms: a food with promising health claims. J Pharm Nutr Sci. 2014;4:187–98. https://doi.org/10.6000/1927-5951.2014.04.03.4.
Article
CAS
Google Scholar
Hasnat MA, Pervin M, Debnath T, Lim BO. DNA protection, total phenolics and antioxidant potential of the mushroom Russula virescens. J Food Biochem. 2014;38:6–17. https://doi.org/10.1111/jfbc.12019.
Article
CAS
Google Scholar
Abdullah N, Ismail SM, Aminudin N, Shuib AS, Lau BF. Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evidence-Based Complement Altern Med. 2012;2012:1–12. https://doi.org/10.1155/2012/464238.
Article
Google Scholar
Wu Z, Li Y. Grifolin exhibits anti-cancer activity by inhibiting the development and invasion of gastric tumor cells. Oncotarget. 2017;8:21454–60. https://doi.org/10.18632/oncotarget.15250.
Article
PubMed
PubMed Central
Google Scholar
Pettersson J, Karlsson PC, Göransson U, Rafter JJ, Bohlin L. The flavouring phytochemical 2-pentanone reduces prostaglandin production and COX-2 expression in colon cancer cells. Biol Pharm Bull. 2008;31:534–7. https://doi.org/10.1248/bpb.31.534.
Article
CAS
PubMed
Google Scholar
Na K, Li K, Tingting S, Wu K, Ying W, Xingya W. Anticarcinogenic effects of water extract of sporoderm-broken spores of Ganoderma lucidum on colorectal cancer in vitro and in vivo. Int J Oncol. 2017;50:1541–54. https://doi.org/10.3892/ijo.2017.3939.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Dev. 2013;140:3079–93. https://doi.org/10.1242/dev.091744.
Article
CAS
Google Scholar
Li K, Na K, Sang T, Wu K, Wang Y, Wang X. The ethanol extracts of sporoderm-broken spores of Ganoderma lucidum inhibit colorectal cancer in vitro and in vivo. Oncol Rep. 2017;38:2803–13. https://doi.org/10.3892/or.2017.6010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li D, Gao L, Li M, Luo Y, Xie Y, Luo T, Su L, Yong T, Chen S, Jiao C, Su J, Huang S. Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: apoptosis inhibition by reversing microtubule polymerization. Biomed Pharmacother. 2020. https://doi.org/10.1016/j.biopha.2020.110539.
Article
PubMed
PubMed Central
Google Scholar
Ahmad MF. Ganoderma lucidum: persuasive biologically active constituents and their health endorsement. Biomed Pharmacother. 2018;107:507–19. https://doi.org/10.1016/j.biopha.2018.08.036.
Article
CAS
PubMed
Google Scholar
Luo J, Zhang C, Liu R, Gao L, Ou S, Liu L, Peng X. Ganoderma lucidum polysaccharide alleviating colorectal cancer by alteration of special gut bacteria and regulation of gene expression of colonic epithelial cells. J Funct Foods. 2018;47:127–35. https://doi.org/10.1016/j.jff.2018.05.041.
Article
CAS
Google Scholar
Dan X, Liu W, Wong JH, Ng TB. A ribonuclease isolated from wild Ganoderma lucidum suppressed autophagy and triggered apoptosis in colorectal cancer cells. Front Pharmacol. 2016;7:1–13. https://doi.org/10.3389/fphar.2016.00217.
Article
CAS
Google Scholar
Jeff IB, Yuan X, Sun L, Kassim RMR, Foday AD, Zhou Y. Purification and in vitro anti-proliferative effect of novel neutral polysaccharides from Lentinus edodes. Int J Biol Macromol. 2013;52:99–106. https://doi.org/10.1016/j.ijbiomac.2012.10.007.
Article
CAS
PubMed
Google Scholar
Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, Hwang D. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem. 1992;267:25934–8. https://doi.org/10.1016/s0021-9258(18)35698-9.
Article
CAS
PubMed
Google Scholar
Elsayed EA, El Enshasy H, Wadaan MAM, Aziz R. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm. 2014. https://doi.org/10.1155/2014/805841.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Mills GL, Nair MG. Cyclooxygenase inhibitory and antioxidant compounds from the fruiting body of an edible mushroom, Agrocybe aegerita. Phytomedicine. 2003;10:386–90. https://doi.org/10.1078/0944-7113-00272.
Article
CAS
PubMed
Google Scholar
Md RI, Sanjida A, Khan TA, Howlader ZH. Nutrient content and antioxidant properties of some popular fruits in Bangladesh. Int J Pharm Sci Res. 2015;6:1407–14. https://doi.org/10.13040/IJPSR.0975-8232.
Article
Google Scholar
Jaganathan SK, Vellayappan MV, Narasimhan G, Supriyanto E. Role of pomegranate and citrus fruit juices in colon cancer prevention. World J Gastroenterol. 2014;20:4618–25. https://doi.org/10.3748/wjg.v20.i16.4618.
Article
PubMed
PubMed Central
Google Scholar
Sheu M-L, Shen C-C, Jheng J-R, Chiang C-K. Activation of PI3K in response to high glucose leads to regulation of SOCS-3 and STAT1/3 signals and induction of glomerular mesangial extracellular matrix formation. Oncotarget. 2017;8:16925–38. https://doi.org/10.18632/oncotarget.14808.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Jia L, Kan J, Jin C-H. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol. 2013;51:310–6. https://doi.org/10.1016/j.fct.2012.10.014.
Article
CAS
PubMed
Google Scholar
Pereira E, Barros L, Martins A, Ferreira ICFR. Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chem. 2012;130:394–403. https://doi.org/10.1016/j.foodchem.2011.07.057.
Article
CAS
Google Scholar
Kosanić M, Ranković B, Rančić A, Stanojković T. Evaluation of metal contents and bioactivity of two edible mushrooms Agaricus campestris and Boletus edulis. Emir J Food Agric. 2017. https://doi.org/10.9755/ejfa.2016-06-656.
Article
Google Scholar
Barros L, Falcão S, Baptista P, Freire C, Vilas-Boas M, Ferreira ICFR. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem. 2008. https://doi.org/10.1016/j.foodchem.2008.03.033.
Article
PubMed
Google Scholar
Hseu Y-C, Chen S-C, Yech Y-J, Wang L, Yang H-L. Antioxidant activity of Antrodia camphorata on free radical-induced endothelial cell damage. J Ethnopharmacol. 2008;118:237–45. https://doi.org/10.1016/j.jep.2008.04.004.
Article
PubMed
Google Scholar
Jaworska G, Pogoń K, Skrzypczak A, Bernaś E. Composition and antioxidant properties of wild mushrooms Boletus edulis and Xerocomus badius prepared for consumption. J Food Sci Technol. 2015;52:7944–53. https://doi.org/10.1007/s13197-015-1933-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sevindik M. Wild edible mushroom Cantharellus cibarius as a natural antioxidant food Doğal bir Antioksidan Gıda Olarak Yenilebilir Yabani Mantar Cantharellus cibarius. Turkish J Agric - Food Sci Technol. 2019;7:1377–81.
Google Scholar
Leung PH, Zhao S, Ho KP, Wu JY. Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem. 2009;114:1251–6. https://doi.org/10.1016/j.foodchem.2008.10.081.
Article
CAS
Google Scholar
Han J, Chen Y, Bao L, Yang X, Liu D, Li S, Zhao F, Liu H. Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus. Fitoterapia. 2013;84:22–31. https://doi.org/10.1016/j.fitote.2012.10.001.
Article
CAS
PubMed
Google Scholar
Liu Y, Zhang B, Ibrahim SA, Gao SS, Yang H, Huang W. Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue. Carbohydr Polym. 2016;145:71–7. https://doi.org/10.1016/j.carbpol.2016.03.020.
Article
CAS
PubMed
Google Scholar
Carneiro AAJ, Ferreira ICFR, Dueñas M, Barros L, Da Silva R, Gomes E, Santos-Buelga C. Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chem. 2013;138:2168–73. https://doi.org/10.1016/j.foodchem.2012.12.036.
Article
CAS
PubMed
Google Scholar
Boin E, Nunes J. Mushroom consumption behavior and influencing factors in a sample of the Portuguese population. J Int Food Agribus Mark. 2018;30:35–48. https://doi.org/10.1080/08974438.2017.1382420.
Article
Google Scholar
Lau BF, Abdullah N, Aminudin N, Lee HB, Tan PJ. Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp. (tigeŕs milk mushrooms) in Malaysia - a review. J Ethnopharmacol. 2015;169:441–58. https://doi.org/10.1016/j.jep.2015.04.042.
Article
CAS
PubMed
Google Scholar
Ferreira I, Barros L, Abreu R. Antioxidants in wild mushrooms. Curr Med Chem. 2009;16:1543–60. https://doi.org/10.2174/092986709787909587.
Article
CAS
PubMed
Google Scholar
He P, Li F, Huang L, Xue D, Liu W, Xu C. Chemical characterization and antioxidant activity of polysaccharide extract from spent mushroom substrate of Pleurotus eryngii. J Taiwan Inst Chem Eng. 2016;69:48–53. https://doi.org/10.1016/j.jtice.2016.10.017.
Article
CAS
Google Scholar
Fontes Vieira PA, Gontijo DC, Vieira BC, Fontes EAF, de Assunção LS, Leite JPV, De MG, Oliveira A, Kasuya MCM. Antioxidant activities, total phenolics and metal contents in Pleurotus ostreatus mushrooms enriched with iron, zinc or lithium. LWT - Food Sci Technol. 2013;54:421–5. https://doi.org/10.1016/j.lwt.2013.06.016.
Article
CAS
Google Scholar
Finimundy TC, Gambato G, Fontana R, Camassola M, Salvador M, Moura S, Hess J, Henriques JAP, Dillon AJP, Roesch-Ely M. Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity. Nutr Res. 2013;33:76–84. https://doi.org/10.1016/j.nutres.2012.11.005.
Article
CAS
PubMed
Google Scholar
Fernandes Â, Petrović J, Stojković D, Barros L, Glamočlija J, Soković M, Martins A, Ferreira ICFR. Polyporus squamosus (Huds.) Fr from different origins: chemical characterization, screening of the bioactive properties and specific antimicrobial effects against Pseudomonas aeruginosa. LWT - Food Sci Technol. 2016;69:91–7. https://doi.org/10.1016/j.lwt.2016.01.037.
Article
CAS
Google Scholar
Omarini A, Henning C, Ringuelet J, Zygadlo JA, Albertó E. Volatile composition and nutritional quality of the edible mushroom Polyporus tenuiculus grown on different agro-industrial waste. Int J Food Sci Technol. 2010;45:1603–9. https://doi.org/10.1111/j.1365-2621.2010.02306.x.
Article
CAS
Google Scholar
Gursoy N, Sarikurkcu C, Tepe B, Solak MH. Evaluation of antioxidant activities of 3 edible mushrooms: Ramaria flava (Schaef: Fr.) Quél., Rhizopogon roseolus (Corda) T.M. Fries, and Russula delica Fr. Food Sci Biotechnol. 2010;19:691–6. https://doi.org/10.1007/s10068-010-0097-8.
Article
CAS
Google Scholar
Elmastas M, Isildak O, Turkekul I, Temur N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compos Anal. 2007;20:337–45. https://doi.org/10.1016/j.jfca.2006.07.003.
Article
CAS
Google Scholar
Cheung LM, Cheung PCK. Mushroom extracts with antioxidant activity against lipid peroxidation. Food Chem. 2005;89:403–9. https://doi.org/10.1016/j.foodchem.2004.02.049.
Article
CAS
Google Scholar
Zhang M, Zhang Y, Zhang L, Tian Q. Mushroom polysaccharide lentinan for treating different types of cancers: a review of 12 years clinical studies in China. 1st ed. London: Elsevier Inc; 2019.
Google Scholar
Rosendahl AH, Sun C, Wu DQ, Andersson R. Polysaccharide-K (PSK) increases p21WAF/Cip1 and promotes apoptosis in pancreatic cancer cells. Pancreatology. 2012;12:467–74. https://doi.org/10.1016/j.pan.2012.09.004.
Article
CAS
PubMed
Google Scholar
Fritz H, Kennedy DA, Ishii M, Fergusson D, Fernandes R, Cooley K, Seely D. Polysaccharide K and Coriolus versicolor extracts for lung cancer: a systematic review. Integr Cancer Ther. 2015;14:201–11. https://doi.org/10.1177/1534735415572883.
Article
CAS
PubMed
Google Scholar
Kodama N, Komuta K, Nanba H. Activation of NK cells in cancer patients. J Med Food. 2003;6:371–7.
Article
CAS
PubMed
Google Scholar
Kodama N, Komuta K, Sakai N, Nanba H. Effects of D-Fraction, a polysaccharide from Grifola frondosa on tumor growth involve activation of NK cells. Biol Pharm Bull. 2002;25:1647–50. https://doi.org/10.1248/bpb.25.1647.
Article
CAS
PubMed
Google Scholar
Lemieszek M, Rzeski W. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Wspolczesna Onkol. 2012;16:285–9. https://doi.org/10.5114/wo.2012.30055.
Article
CAS
Google Scholar
Brown GD, Gordon S. A new receptor for β-glucans. Nature. 2001;413:36–7. https://doi.org/10.1038/35092620.
Article
CAS
PubMed
Google Scholar
Strobel G, Daisy B, Castillo U, Harper J. Natural products from endophytic microorganisms. J Nat Prod. 2004;67:257–68. https://doi.org/10.1021/np030397v.
Article
CAS
PubMed
Google Scholar
Janeš D, Kreft S, Jurc M, Seme K, Štrukelj B. Antibacterial activity in higher fungi (mushrooms) and endophytic fungi from Slovenia. Pharm Biol. 2007;45:700–6. https://doi.org/10.1080/13880200701575189.
Article
Google Scholar
Kim SP, Lee SJ, Nam SH, Friedman M. The composition of a bioprocessed shiitake (Lentinus edodes) mushroom mycelia and rice bran formulation and its antimicrobial effects against Salmonella enterica subsp. enterica serovar Typhimurium strain SL1344 in macrophage cells and in mice 06 Biologic. BMC Complement Altern Med. 2018;18:1–12. https://doi.org/10.1186/s12906-018-2365-8.
Article
CAS
Google Scholar
Matijaševic D, Pantic M, Raškovic B, Pavlovic V, Duvnjak D, Sknepnek A, Nikšic M. The antibacterial activity of coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and salmonella enteritidis. Front Microbiol. 2016;7:1–15. https://doi.org/10.3389/fmicb.2016.01226.
Article
Google Scholar
Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira ICFR. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol. 2008;46:2742–7. https://doi.org/10.1016/j.fct.2008.04.030.
Article
CAS
PubMed
Google Scholar
Lima CUJO, Gris EF, Karnikowski MGO. Antimicrobial properties of the mushroom Agaricus blazei – integrative review. Rev Bras Farmacogn. 2016;26:780–6. https://doi.org/10.1016/j.bjp.2016.05.013.
Article
Google Scholar
Mazzutti S, Ferreira SRS, Riehl CAS, Smania A, Smania FA, Martínez J. Supercritical fluid extraction of Agaricus brasiliensis: antioxidant and antimicrobial activities. J Supercrit Fluids. 2012;70:48–56. https://doi.org/10.1016/j.supflu.2012.06.010.
Article
CAS
Google Scholar
Gebreyohannes G, Nyerere A, Bii C, Berhe Sbhatu D. Determination of antimicrobial activity of extracts of indigenous wild mushrooms against pathogenic organisms. Evidence-Based Complement Altern Med. 2019. https://doi.org/10.1155/2019/6212673.
Article
Google Scholar
Venturini ME, Rivera CS, Gonzalez C, Blanco D. Antimicrobial activity of extracts of edible wild and cultivated mushrooms against foodborne bacterial strains. J Food Prot. 2008;71:1701–6. https://doi.org/10.4315/0362-028X-71.8.1701.
Article
CAS
PubMed
Google Scholar
Ishikawa NK, Kasuya MCM, Dantas Vanetti MC. Antibacterial activity of Lentinula edodes grown in liquid medium. Braz J Microbiol. 2001;32:206–10. https://doi.org/10.1590/S1517-83822001000300008.
Article
Google Scholar
Chen B, Tian J, Zhang J, Wang K, Liu L, Yang B, Bao L, Liu H. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase. Fitoterapia. 2017;120:6–16. https://doi.org/10.1016/j.fitote.2017.05.005.
Article
CAS
PubMed
Google Scholar
Smania EDFA, Delle Monache F, Yunes RA, Paulert R, Smania A. Antimicrobial activity of methyl australate from Ganoderma austral. Rev Bras Farmacogn. 2007;17:14–6. https://doi.org/10.1590/S0102-695X2007000100004.
Article
CAS
Google Scholar
Sheena N, Ajith TA, Mathew AT, Janardhanan KK. Antibacterial activity of three macrofungi, Ganoderma lucidum, Navesporus floccosa and Phellinus rimosus occurring in South India. Pharm Biol. 2003;41:564–7. https://doi.org/10.1080/13880200390501226.
Article
Google Scholar
Alves M, Ferreira IFR, Dias J, Teixeira V, Martins A, Pintado M. A review on antimicrobial activity of mushroom (basidiomycetes) extracts and isolated compounds. Planta Med. 2012;78:1707–18. https://doi.org/10.1055/s-0032-1315370.
Article
CAS
PubMed
Google Scholar
Shameem N, Kamili AN, Ahmad M, Masoodi FA, Parray JA. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya. Microb Pathog. 2017;105:356–60. https://doi.org/10.1016/j.micpath.2017.03.005.
Article
CAS
PubMed
Google Scholar
Alves MJ, Ferreira ICFR, Dias J, Teixeira V, Martins A, Pintado M. A review on antifungal activity of mushroom (Basidiomycetes) extracts and isolated compounds. Curr Top Med Chem. 2013;13:2648–59.
Article
CAS
PubMed
Google Scholar
Yamaç M, Bilgili F. Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm Biol. 2006;44:660–7. https://doi.org/10.1080/13880200601006897.
Article
Google Scholar
Poucheret P, Fons F, Rapior S. Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogamie Mycologie. 2006;27(4):311.
Google Scholar
Gebreyohannes G, Moges F, Sahile S, Raja N. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia, Asian Pac. J Trop Biomed. 2013;3:426–35. https://doi.org/10.1016/S2221-1691(13)60092-1.
Article
CAS
Google Scholar
Henrique Rosa L, Gomes Machado KM, Jacob CC, Capelari M, Augusto Rosa C, Leomar Zani C. Screening of Brazilian basidiomycetes for antimicrobial activity. Mem Inst Oswaldo Cruz. 2003;98:967–74. https://doi.org/10.1590/s0074-02762003000700019.
Article
Google Scholar
Heleno SA, Ferreira ICFR, Esteves AP, Ćirić A, Glamočlija J, Martins A, Soković M, Queiroz MJRP. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food Chem Toxicol. 2013;58:95–100. https://doi.org/10.1016/j.fct.2013.04.025.
Article
CAS
PubMed
Google Scholar
Walton K, Walker R, Ioannides C. Effect of baking and freeze-drying on the direct and indirect mutagenicity of extracts from the edible mushroom Agaricus bisporus. Food Chem Toxicol. 1998;36:315–20. https://doi.org/10.1016/S0278-6915(97)00161-0.
Article
CAS
PubMed
Google Scholar
Li W, Qiu T, Ling Y, Guo L, Li L, Ying J. Molecular pathological epidemiology of colorectal cancer in Chinese patients with KRAS and BRAF mutations. Oncotarget. 2015;6:39607–13. https://doi.org/10.18632/oncotarget.5551.
Article
PubMed
PubMed Central
Google Scholar
Zlobec I, Kovac M, Erzberger P, Molinari F, Bihl MP, Rufle A, Foerster A, Frattini M, Terracciano L, Heinimann K, Lugli A. Combined analysis of specific KRAS mutation, BRAF and microsatellite instability identifies prognostic subgroups of sporadic and hereditary colorectal cancer. Int J Cancer. 2010;127:2569–75. https://doi.org/10.1002/ijc.25265.
Article
CAS
PubMed
Google Scholar
Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol. 2013;26:465–84. https://doi.org/10.1038/modpathol.2012.214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward RL, Todd AV, Santiago F, O’Connor T, Hawkins NJ. Activation of the K-ras oncogene in colorectal neoplasms is associated with decreased apoptosis. Cancer. 1997;79:1106–13. https://doi.org/10.1002/(SICI)1097-0142(19970315)79:6%3c1106::AID-CNCR8%3e3.0.CO;2-D.
Article
CAS
PubMed
Google Scholar
Tu D, Ph D, Tebbutt NC, Ph D, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Sc M, Price TJ, Shepherd L, Au H, Langer C, Moore MJ, Zalcberg JR, Ph D. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008. https://doi.org/10.1056/NEJMoa0804385.
Article
PubMed
Google Scholar
Jonker DJ, O’Callaghan CJ, Karapetis C, Zalcberg JR, Tu D, Au HJ, Berry SR, Krahn M, Price T, Simes RJ, Tebbutt NC, van Hazel G, Wierzbicki R, Langer C, Moore MJ. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357:2040–8.
Article
CAS
PubMed
Google Scholar
Debnath S, Sen D. Mushrooms are potential foods against cancer: identified by molecular docking and molecular dynamics simulation. Nat Prod Res. 2022;36:2604–9. https://doi.org/10.1080/14786419.2021.1912041.
Article
CAS
PubMed
Google Scholar
Kanakaraju Manupati AD, Dhoke NR, Debnath T, Yeeravalli R, Guguloth K, Saeidpour S, De UC, Debnath S. Inhibiting epidermal growth factor receptor signalling potentiates mesenchymal - epithelial transition of breast cancer stem cells and their responsiveness to anticancer drugs. Int J Lab Hematol. 2016;38:42–9. https://doi.org/10.1111/ijlh.12426.
Article
Google Scholar
Vamanu E. Bioactive capacity of some Romanian wild edible mushrooms consumed mainly by local communities. Nat Prod Res. 2018;32:440–3. https://doi.org/10.1080/14786419.2017.1308365.
Article
CAS
PubMed
Google Scholar
Lindequist U, Niedermeyer THJ, Jülich WD. The pharmacological potential of mushrooms. Evidence-Based Complement Altern Med. 2005;2:285–99. https://doi.org/10.1093/ecam/neh107.
Article
Google Scholar
Medina PJ, Goodin S. Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther. 2008;30:1426–47. https://doi.org/10.1016/j.clinthera.2008.08.008.
Article
CAS
PubMed
Google Scholar
Suárez-Arroyo IJ, Rios-Fuller TJ, Feliz-Mosquea YR, Lacourt-Ventura M, Leal-Alviarez DJ, Maldonado-Martinez G, Cubano LA, Martínez-Montemayor MM. Ganoderma lucidum combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib synergize to reduce inflammatory breast cancer progression. J Cancer. 2016;7:500–11. https://doi.org/10.7150/jca.13599.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu ZH, Hang JB, Hu JA, Gao BL. RAF1-MEK1-ERK/AKT axis may confer NSCLC cell lines resistance to erlotinib. Int J Clin Exp Pathol. 2013;6:1493–504.
CAS
PubMed
PubMed Central
Google Scholar
Yi YW, Hong W, Kang HJ, Kim HJ, Zhao W, Wang A, Seong YS, Bae I. Inhibition of the PI3K/AKT pathway potentiates cytotoxicity of EGFR kinase inhibitors in triple-negative breast cancer cells. J Cell Mol Med. 2013;17:648–56. https://doi.org/10.1111/jcmm.12046.
Article
CAS
PubMed
PubMed Central
Google Scholar