Squadroni M, Tondulli L, Gatta G, Mosconi S, Beretta G, Labianca R. Cholangiocarcinoma. Crit Rev Oncol Hematol. 2017;116:11–31.
Article
PubMed
Google Scholar
Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15:95–111.
Article
CAS
PubMed
Google Scholar
Mertens JC, Rizvi S, Gores GJ. Targeting cholangiocarcinoma. Biochim Biophys Acta. 2017. https://doi.org/10.1016/j.bbadis.2017.08.027.
PubMed
Google Scholar
Pongnikorn D, Suwanrungruang K, Buasom R. Chapter II: Cancer Incidence in Thailand, Liver and bile duct. In: Imsamran W, Chaiwerawattana A, Wiangnon S, Pongnikorn D, Suwanrungrung K, Sangrajrang S, et al. eds. Cancer in Thailand, 2010–2012, vol. VIII Bangkok: National Cancer Institute Thailand, 2015;32–4.
Ronnekleiv-Kelly SM, Pawlik TM. Staging of intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr. 2017;6:35–43.
Article
PubMed
PubMed Central
Google Scholar
Plentz RR, Malek NP. Systemic therapy of cholangiocarcinoma. Visc Med. 2016;32:427–30.
Article
PubMed
PubMed Central
Google Scholar
Radtke A, Königsrainer A. Surgical Therapy of Cholangiocarcinoma. Visc Med. 2016;32:422–6.
Article
PubMed
PubMed Central
Google Scholar
Narasaka T, Moriya T, Endoh M, Suzuki T, Shizawa S, Mizokami Y, et al. 17Beta-hydroxysteroid dehydrogenase type 2 and dehydroepiandrosterone sulfotransferase in the human liver. Endocr J. 2000;47:697–705.
Article
CAS
PubMed
Google Scholar
Hunsawong T, Singsuksawat E, In-chon N, Chawengrattanachot W, Thuwajit C, Sripa B, et al. Estrogen is increased in male cholangiocarcinoma patients’ serum and stimulates invasion in cholangiocarcinoma cell lines in vitro. J Cancer Res Clin Oncol. 2012;138:1311–20.
Article
CAS
PubMed
Google Scholar
Liossi AK, Aroni KG, Kyrkou KA, Kittas C, Markaki SP. Immunohistochemical study of sex steroid hormones in primary liver cancer. Cancer Detect Prev. 1988;13:195–201.
CAS
PubMed
Google Scholar
Hilton HN, Clarke CL, Graham JD. Estrogen and progesterone signalling in the normal breast and its implications for cancer development. Mol Cell Endocrinol. 2017. https://doi.org/10.1016/j.mce.2017.08.011.
PubMed
Google Scholar
Plaza-Parrochia F, Romero C, Valladares L, Vega M. Endometrium and steroids, a pathologic overview. Steroids. 2017;26:85–91.
Article
Google Scholar
Jeon SY, Hwang KA, Choi KC. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol. 2016;158:1–8.
Article
CAS
PubMed
Google Scholar
Zhou Q, Shen L, Liu C, Liu C, Chen H, Liu J. The effects of estradiol and glucocorticoid on human osteosarcoma cells: similarities and differences. Anticancer Res. 2016;36:1683–91.
CAS
PubMed
Google Scholar
Shi X, Peng Y, Du X, Liu H, Klocker H, Lin Q, et al. Estradiol promotes epithelial-to-mesenchymal transition in human benign prostatic epithelial cells. Prostate. 2017;77:1424–37.
Article
CAS
PubMed
Google Scholar
Zhang Y, Wei F, Zhang J, Hao L, Jiang J, Dang L, et al. Bisphenol A and estrogen induce proliferation of human thyroid tumor cells via an estrogen-receptor-dependent pathway. Arch Biochem Biophys. 2017;633:29–39.
Article
CAS
PubMed
Google Scholar
Alvaro D, Mancino MG, Onori P, Franchitto A, Alpini G, Francis H, et al. Estrogens and the pathophysiology of the biliary tree. World J Gastroenterol. 2006;12:3537–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvaro D, Barbaro B, Franchitto A, Onori P, Glaser SS, Alpini G, et al. Estrogens and insulin-like growth factor 1 modulate neoplastic cell growth in human cholangiocarcinoma. Am J Pathol. 2006;169:877–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isse K, Specht SM, Lunz JG 3rd, Kang LI, Mizuguchi Y, Demetris AJ. Estrogen stimulates female biliary epithelial cell interleukin-6 expression in mice and humans. Hepatology. 2010;51:869–80.
Article
CAS
PubMed
Google Scholar
Mancino A, Mancino MG, Glaser SS, Alpini G, Bolognese A, Izzo L, et al. Estrogens stimulate the proliferation of human cholangiocarcinoma by inducing the expression and secretion of vascular endothelial growth factor. Dig Liver Dis. 2009;41:156–63.
Article
CAS
PubMed
Google Scholar
Kilander C, Mattsson F, Lu Y, Ljung R, Lagergren J, Sadr-Azodi O. Exogenous estrogen and the risk of biliary tract cancer—a population-based study in a cohort of Swedish men treated for prostate cancer. Acta Oncol. 2016;55:846–50.
Article
CAS
PubMed
Google Scholar
Oh S, Shin S, Janknecht R. ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta. 2012;1826:1–12.
CAS
PubMed
PubMed Central
Google Scholar
Hollenhorst PC, Paul L, Ferris MW, Graves BJ. The ETS gene ETV4 is required for anchorage-independent growth and a cell proliferation gene expression program in PC3 prostate cells. Genes Cancer. 2011;1:1044–52.
Article
PubMed
Google Scholar
Keld R, Guo B, Downey P, Gulmann C, Ang YS, Sharrocks AD. The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma. Mol Cancer. 2010;9:313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi M, Liu Z, Shen C, Wang L, Zeng J, Wang C, et al. Overexpression of ETV4 is associated with poor prognosis in prostate cancer: involvement of uPA/uPAR and MMPs. Tumour Biol. 2015;36:3565–72.
Article
CAS
PubMed
Google Scholar
Yuan ZY, Dai T, Wang SS, Peng RJ, Li XH, Qin T, et al. Overexpression of ETV4 protein in triple-negative breast cancer is associated with a higher risk of distant metastasis. Onco Targets Ther. 2014;7:1733–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishida S, Yoshida K, Kaneko Y, Tanaka Y, Sasaki Y, Urano F, et al. The genomic breakpoint and chimeric transcripts in the EWSR1-ETV4/E1AF gene fusion in Ewing sarcoma. Cytogenet Cell Genet. 1998;82:278–83.
Article
CAS
PubMed
Google Scholar
Hermans KG, Bressers AA, van der Korput HA, Dits NF, Jenster G, Trapman J. Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res. 2008;68:3094–8.
Article
CAS
PubMed
Google Scholar
Ishida S, Higashino F, Aoyagi M, Takahashi A, Suzuki T, Shindoh M, et al. Genomic structure and promoter activity of the E1AF gene, a member of the ETS oncogene family. Biochem Biophys Res Commun. 2006;339:325–30.
Article
CAS
PubMed
Google Scholar
Cellosaurus KKU-M213 (CVCL_M261). ExPASy Bioinformatics Resource Portal, Swiss Institute of Bioinformatics, Lausanne, Switzerland. 2018. https://web.expasy.org/cellosaurus/CVCL_M261. Accessed 30 Jan 2018.
JCRB1557 KKU-213 Cell information. Japanese collection of research bioresources (JCRB) Cell Bank, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, japan; 2018. http://cellbank.nibiohn.go.jp/~cellbank/en/search_res_det.cgi?ID=7076. Accessed 30 Jan 2018.
Cellosaurus KKU-M139 (CVCL_M259). ExPASy Bioinformatics Resource Portal, Swiss Institute of Bioinformatics, Lausanne, Switzerland. 2018. https://web.expasy.org/cellosaurus/CVCL_M259. Accessed 30 Jan 2018.
Gordon MN, Osterburg HH, May PC, Finch CE. Effective oral administration of 17 beta-estradiol to female C57BL/6J mice through the drinking water. Biol Reprod. 1986;35:1088–95.
Article
CAS
PubMed
Google Scholar
Kisanga ER, Gjerde J, Schjøtt J, Mellgren G, Lien EA. Tamoxifen administration and metabolism in nude mice and nude rats. J Steroid Biochem Mol Biol. 2003;84:361–7.
Article
CAS
PubMed
Google Scholar
Estradiol reference range. Medscape. WebMD LLC., Atlanta, GA, USA; 2018. https://emedicine.medscape.com/article/2089003-overview. Accessed 30 Jan 2018.
Jameera Begam A, Jubie S, Nanjan MJ. Estrogen receptor agonists/antagonists in breast cancer therapy: a critical review. Bioorg Chem. 2017;71:257–74.
Article
CAS
PubMed
Google Scholar
Sampson LK, Vickers SM, Ying W, Phillips JO. Tamoxifen-mediated growth inhibition of human cholangiocarcinoma. Cancer Res. 1997;57:1743–9.
CAS
PubMed
Google Scholar
Liu ZH, He YP, Qin H. The growth-inhibition effect of tamoxifen in the combination chemotherapeutics on the human cholangiocarcinoma cell line QBC939. Mol Biol Rep. 2010;37:2693–701.
Article
CAS
PubMed
Google Scholar
Liu ZH, Ma YL, He YP, Zhang P, Zhou YK, Qin H. Tamoxifen reverses the multi-drug-resistance of an established human cholangiocarcinoma cell line in combined chemotherapeutics. Mol Biol Rep. 2011;38:1769–75.
Article
CAS
PubMed
Google Scholar
Jing G, Yuan K, Turk AN, Jhala NC, Arnoletti JP, Zhang K, et al. Tamoxifen enhances therapeutic effects of gemcitabine on cholangiocarcinoma tumorigenesis. Lab Investig. 2011;91:896–904.
Article
CAS
PubMed
Google Scholar
Vickers SM, Jhala NC, Ahn EY, McDonald JM, Pan G, Bland KI. Tamoxifen (TMX)/Fas induced growth inhibition of human cholangiocarcinoma (HCC) by gamma interferon (IFN-gamma). Ann Surg. 2002;235:872–8.
Article
PubMed
PubMed Central
Google Scholar
Pawar P, Ma L, Byon CH, Liu H, Ahn EY, Jhala NH, et al. Molecular mechanisms of tamoxifen therapy for cholangiocarcinoma: role of calmodulin. Clin Cancer Res. 2009;15:1288–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Ma Y, Qin H. Combinative strategy using tamoxifen and other chemotherapeutic drugs for cholangiocarcinoma chemotherapy. Hepatology. 2011;53:375–6.
Article
PubMed
Google Scholar
Welboren WJ, Stunnenberg HG, Sweep FC, Span PN. Identifying estrogen receptor target genes. Mol Oncol. 2007;1:138–43.
Article
PubMed
PubMed Central
Google Scholar
Euhus D, Bu D, Xie XJ, Sarode V, Ashfaq R, Hunt K, et al. Tamoxifen downregulates ets oncogene family members ETV4 and ETV5 in benign breast tissue: implications for durable risk reduction. Cancer Prev Res (Phila). 2011;4:1852–62.
Article
CAS
Google Scholar
Aytes A, Mitrofanova A, Kinkade CW, Lefebvre C, Lei M, Phelan V, et al. ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer. Proc Natl Acad Sci USA. 2013;110:E3506–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fung TM, Ng KY, Tong M, Chen JN, Chai S, Chan KT, et al. Neuropilin-2 promotes tumourigenicity and metastasis in oesophageal squamous cell carcinoma through ERK-MAPK-ETV4-MMP-E-cadherin deregulation. J Pathol. 2016;239:309–19.
Article
CAS
PubMed
Google Scholar
Keld R, Guo B, Downey P, Cummins R, Gulmann C, Ang YS, et al. PEA3/ETV4-related transcription factors coupled with active ERK signalling are associated with poor prognosis in gastric adenocarcinoma. Br J Cancer. 2011;105:124–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, Obaid H, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17:1094–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai L, Ladomersky E, Lenzen A, Nguyen B, Patel R, Lauing KL, et al. IDO1 in cancer: a Gemini of immune checkpoints. Cell Mol Immunol. 2018. https://doi.org/10.1038/cmi.2017.143.
PubMed
Google Scholar
Källberg E, Wikström P, Bergh A, Ivars F, Leanderson T. Indoleamine 2,3-dioxygenase (IDO) activity influence tumor growth in the TRAMP prostate cancer model. Prostate. 2010;70:1461–70.
Article
PubMed
Google Scholar
Su C, Zhang P, Liu J, Cao Y. Erianin inhibits indoleamine 2, 3-dioxygenase-induced tumor angiogenesis. Biomed Pharmacother. 2017;88:521–8.
Article
CAS
PubMed
Google Scholar