Li T, Mello-Thoms C, Brenna PC. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence. Breast Cancer Res Treat. 2016;159(3):395–406.
Article
PubMed
CAS
Google Scholar
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.
Article
PubMed
Google Scholar
Xu HX, Wu KJ, Tian YJ, Liu Q, Han N, Yuan X, Zhang L, Wu GS, Wu K. CD44 correlates with clinicopathological characteristics and is upregulated by EGFR in breast cancer. Int J Oncol. 2016;49:1343–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chewchuk S, Guo B, Parissenti AM. Alterations in estrogen signalling pathways upon acquisition of anthracycline resistance in breast tumor cells. PLoS ONE. 2017;12(2):e0172244.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kelly AA, Stephen GB, Andrea M, John FF, Rodney JS. Decreased expression of key tumor suppressor microRNAs is associated with lymph node metastases in triple negative breast cancer. BMC Cancer. 2014;14:51.
Article
CAS
Google Scholar
Veronika B, Michael ZM, Jonathan MG. Hypoxia represses microRNA biogenesis proteins in breast cancer cells. BMC Cancer. 2014;14:533.
Article
CAS
Google Scholar
Huang XJ, Xie XH, Wang H, Xiao XS, Yang L, Tian Z, Guo XF, Zhang LJ, Tang HL, Xie XM. PDL1 and LDHA act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res. 2017;36(1):129.
Article
PubMed
PubMed Central
Google Scholar
He R, Liu P, Xie X, Zhou Y, Liao Q, Xiong W, Li X, Li G, Zeng Z, Tang H. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res. 2017;36(1):145.
Article
PubMed
PubMed Central
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.
Article
PubMed
CAS
Google Scholar
Li J, Lai YH, Ma JY, Liu Y, Bi J, Zhang LJ, Chen LZ, Yao C, Lv WM, Chang GQ, Wang SM, Oy M, Wang WJ. miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer. BMC cancer. 2017;17:745.
Article
PubMed
PubMed Central
Google Scholar
Lai YH, Chen J, Wang XP, Wu YQ, Peng HT, Lin XH, Wang WJ. Collagen triple helix repeat containing-1 negatively regulated by microRNA-30c promotes cell proliferation and metastasis and indicates poor prognosis in breast cancer. J Exp Clin Cancer Res. 2017;36:92.
Article
PubMed
PubMed Central
Google Scholar
Yang ZX, Zhang B, Wei J, Jiang GQ, Wu YL, Leng BJ, Xing CG. MiR-539 inhibits proliferation and migration of triple-negative breast cancer cells by down-regulating LAMA4 expression. Cancer Cell Int. 2018;18:16.
Article
PubMed
PubMed Central
Google Scholar
Hamada S, Masamune A, Miura S, Satoh K, Shimosegawa T. MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell Signal. 2014;26:179–85.
Article
PubMed
CAS
Google Scholar
Su Z, Yang Z, Xu Y, Chen Y, Yu Q. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget. 2015;6(11):8474–90.
Article
PubMed
PubMed Central
Google Scholar
Wang Q, Cheng Y, Wang Y, Fan YB, Li C, Zhang Y, Wang YD, Dong Q, Ma YJ, Teng YE, Qu XJ, Liu YP. Tamoxifen reverses epithelial-mesenchymal transition by demethylating miR-200c in triple-negative breast cancer cells. BMC Cancer. 2017;17:492.
Article
PubMed
PubMed Central
Google Scholar
Song Q, Chen Q, Wang Q, Yang L, Lv D, Jin G, Liu J, Li B, Fei X. ATF-3/miR-590-GOLPH3 signaling pathway regulates proliferation of breast cancer. BMC Cancer. 2018;18(1):255.
Article
PubMed
Google Scholar
Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2015;13(5):358–69.
Article
CAS
Google Scholar
Xia W, Zhou JY, Luo HB, Liu YZ, Peng CC, Zheng WL, Ma WL. MicroRNA-32 promotes cell proliferation, migration and suppresses apoptosis in breast cancer cells by targeting FBXW7. Cancer Cell Int. 2017;17:14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, Yang JM. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol. 2008;76:582–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boo L, Ho WY, Ali NM, Yeap SK, Ky H, Chan KG, Yin WF, Satharasinghe DA, Liew WC, Tan SW, Ong HK, Cheong SK. MiRNA transcriptome profiling of spheroid-enriched cells with cancer stem cell properties in human breast MCF-7 cell line. Int J Biol Sci. 2016;12(4):427–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nishida N, Nagasaka T, Nishimura T, Ikai I, Boland CR, Geol A. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology. 2008;47(3):908–18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zeng S, Yang Y, Cheng X, Zhou B, Li P, Zhao Y, Kong X, Xu Y. HIC1 epigenetically represses CIITA transcription in B lymphocytes. Biochim Biophys Acta. 2016;1859(12):1481–9.
Article
PubMed
CAS
Google Scholar
Zhao G, Qin Q, Zhang J, Liu Y, Deng S, Liu L, Wang B, Tian K, Wang C. Hypermethylation of HIC1 promoter and aberrant expression of HIC1/SIRT1 might contribute to the carcinogenesis of pancreatic cancer. Ann Surg Oncol. 2013;3:S301–11.
Article
Google Scholar
Cheng G, Sun X, Wang J, Xiao G, Wang X, Fan X, Zu L, Hao M, Qu Q, Mao Y, Xue Y, Wang J. HIC1 silencing in triple-negative breast cancer drives progression through misregulation of LCN2. Cancer Res. 2014;74(3):862–72.
Article
PubMed
CAS
Google Scholar
Hu B, Zhang K, Li S, Li H, Yan Z, Huang L, Wu J, Han X, Jiang W, Mulatibieke T, Zheng L, Wan R, Wang X, Hu G. HIC1 attenuates invasion and metastasis by inhibiting the IL-6/STAT3 signalling pathway in human pancreatic cancer. Cancer Lett. 2016;376(2):387–98.
Article
PubMed
CAS
Google Scholar
Wu W, Zhang L, Lin J, Huang H, Shi B, Lin X, Huang Z, Wang C, Qiu J, Wei X. Hypermethylation of the HIC1 promoter and aberrant expression of HIC1/SIRT1 contribute to the development of thyroid papillary carcinoma. Oncotarget. 2016;7(51):84416–27.
PubMed
PubMed Central
Google Scholar
Dubuissez M, Faiderbe P, Pinte S, Dehennaut V, Rood BR, Leprince D. The Reelin receptors ApoER2 and VLDLR are direct target genes of HIC1 (Hypermethylated In Cancer 1). Biochem Biophys Res Commun. 2013;440(3):424–30.
Article
PubMed
CAS
Google Scholar
Valenta T, Lukas J, Doubravska L, Fafilek B, Korinek V. HIC1 attenuates Wnt signaling by recruitment of TCF-4 and beta-catenin to the nuclear bodies. EMBO J. 2006;25(11):2326–37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rood BR, Leprince D. Deciphering HIC1 control pathways to reveal new avenues in cancer therapeutics. Expert Opin Ther argets. 2013;17(7):811–27.
Article
CAS
Google Scholar
Markowski J, Sieroń AL, Kasperczyk K, Ciupińska-Kajor M, Auguściak-Duma A, Likus W. Expression of the tumor suppressor gene hypermethylated in cancer 1 in laryngeal carcinoma. Oncol Lett. 2015;9(5):2299–302.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kovalchuk O, Filkowski J, Meservy J, llnytskyy Y, Tryndyak VP, Chekhun VF, Pogribny IP. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7(7):2152–9.
Article
PubMed
CAS
Google Scholar
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. WEGO: a web tool for plotting GO annotation s. Nucleic Acids Res. 2006;34:W293–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Towbin HST, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979;76:4350–4.
Article
PubMed
CAS
Google Scholar
Ganoth A, Merimi KC, Peer D. Overcoming multidrug resistance with nanomedicines. Expert Opin Drug Deliv. 2015;12(2):223–38.
Article
PubMed
CAS
Google Scholar
Png KJ, Halberg N, Yoshida M, Tavazoie SF. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature. 2012;481:190–4.
Article
CAS
Google Scholar
Ninio-Many L, Grossman H, Levi M, Zilber S, Tsarfaty I, Shomron N, Tuvar A, Chuderland D, Stemmer SM, Ben-Aharon I, et al. MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience. 2014;1:250.
Article
PubMed
PubMed Central
Google Scholar
Foveau B, Boulay G, Pinte S, Van Rechem C, Rood BR, Leprince D. The receptor tyrosine kinase EphA2 is a direct target gene of hypermethylated in cancer 1 (HIC1). J Biol Chem. 2012;287(8):5366–78.
Article
PubMed
CAS
Google Scholar
Nicoll G, Crichton DN, McDowell HE, Kernohan N, Hupp TR, Thompson AM. Expression of the hypermethylated in cancer gene (HIC-1) is associated with good outcome in human breast cancer. Br J Cancer. 2001;85(12):1878–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hayashi M, Tokuchi Y, Hashimoto T, Hayashi S, Nishida K, Ishikawa Y, Nakagawa K, Tsuchiya S, Okumura S, Tsuchiya E. Reduced HIC-1 gene expression in non-small cell lung cancer and its clinical significance. Anticancer Res. 2001;21(1B):535–40.
PubMed
CAS
Google Scholar
Boulay G, Malaquin N, Loison I, Foveau B, Van RC, Rood BR, Pourtier A, Leprince D. Loss of hypermethylated in cancer 1 (HIC1) in breast cancer cells contributes to stress-induced migration and invasion through β-2 adrenergic receptor (ADRB2) misregulation. J Biol Chem. 2012;287(8):5379–89.
Article
PubMed
CAS
Google Scholar
Eggers H, Steffens S, Grosshennig A, Becker JU, Hennenlotter J, Stenzl A, Merseburger AS, Kuczyk MA, Serth J. Prognostic and diagnostic relevance of hypermethylated in cancer 1 (HIC1) CpG island methylation in renal cell carcinoma. Int J Oncol. 2012;40(5):1650–8.
PubMed
CAS
Google Scholar
Zhao F, Pan S, Gu Y, Guo S, Dai Q, Yu Y, Zhang W. Reactivation of HIC-1 gene by saRNA inhibits clonogenicity and invasiveness in breast cancer cells. Oncol Lett. 2015;9(1):159–64.
Article
PubMed
Google Scholar
Kumar S. Molecular cloning and expression of high GC-rich novel tumor suppressor gene HIC-1. Mol Biotechnol. 2014;56(11):1040–8.
Article
PubMed
CAS
Google Scholar
Lin YW, Ren LL, Xiong H, Du W, Yu YN, Sun TT, Weng YR, Wang ZH, Wang JL, Wang YC, Cui Y, Sun DF, Han ZG, Shen N, Zou W, Xu J, Chen HY, Cao W, Hong J, Fang JY. Role of STAT3 and vitamin D receptor in EZH2-mediated invasion of human colorectal cancer. J Pathol. 2013;230(3):277–90.
Article
PubMed
CAS
Google Scholar
Liu X, Wang J, Wang H, Yin G, Liu Y, Lei X, Xiang M. REG3A accelerates pancreatic cancer cell growth under IL-6-associated inflammatory condition: involvement of a REG3A-JAK2/STAT3 positive feedback loop. Cancer Lett. 2015;362(1):45–60.
Article
PubMed
CAS
Google Scholar
Zhuang PY, Zhang KW, Wang JD, Zhou XP, Liu YB, Quan ZW, Shen J. Effect of TALEN-mediated IL-6 knockout on cell proliferation, apoptosis, invasion and anti-cancer therapy in hepatocellular carcinoma (HCC-LM3) cells. Oncotarget. 2017;8(44):77915–27.
PubMed
PubMed Central
Google Scholar
Wang L, Cao L, Wang H, Liu B, Zhang Q, Meng Z, Wu X, Zhou Q, Xu K. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget. 2017;8(44):76116–28.
PubMed
PubMed Central
Google Scholar