Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2016. https://doi.org/10.1136/gutjnl-2015-310912.
Article
PubMed
Google Scholar
Brand M, Gaylard P, Ramos J. Colorectal cancer in South Africa: an assessment of disease presentation, treatment pathways and 5-year survival. SAMJ S Afr Med J. 2018;108:118–22.
Article
PubMed
CAS
Google Scholar
Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol. 2012;13:790–801.
Article
PubMed
Google Scholar
Alwan A. Global status report on noncommunicable diseases 2010. Geneva: World Health Organization; 2011.
Google Scholar
Saluja S, Alatise OI, Adewale A, Misholy J, Chou J, Gonen M, Weiser M, Kingham TP. A comparison of colorectal cancer in Nigerian and North American patients: is the cancer biology different? Surgery. 2014;156:305–10.
Article
PubMed
Google Scholar
CECP-Nigeria. Colon cancer prevention in Nigeria—an achievable goal. Guardiance Newspaper, © 2015 Committee Encouraging Corporate Philanthropy (CECP-Nigeria). 2015.
Ahmed FE, Jeffries CD, Vos PW, Flake G, Nuovo GJ, Sinar DR, Naziri W, Marcuard SP. Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genom Proteom. 2009;6:281–95.
CAS
Google Scholar
Song L-L, Li Y-M. Current noninvasive tests for colorectal cancer screening: an overview of colorectal cancer screening tests. World J Gastrointest Oncol. 2016;8:793.
Article
PubMed
PubMed Central
Google Scholar
Lieberman D. Progress and challenges in colorectal cancer screening and surveillance. Gastroenterology. 2010;138:2115–26.
Article
PubMed
Google Scholar
Heo J, Jeon SW, Jung MK, Kim SK, Kim J, Kim S. Endoscopic resection as the first-line treatment for early colorectal cancer: comparison with surgery. Surg Endosc. 2014;28:3435–42.
Article
PubMed
Google Scholar
Vukobrat-Bijedic Z, Husic-Selimovic A, Sofic A, Bijedic N, Bjelogrlic I, Gogov B, Mehmedovic A. Cancer antigens (CEA and CA 19-9) as markers of advanced stage of colorectal carcinoma. Med Arch. 2013;67:397.
Article
PubMed
PubMed Central
Google Scholar
Sovich JL, Sartor Z, Misra S. Developments in screening tests and strategies for colorectal cancer. BioMed Res Int. 2015. https://doi.org/10.1155/2015/326728.
Article
PubMed
PubMed Central
Google Scholar
Kawamura M, Toiyama Y, Tanaka K, Inoue Y, Kusunoki M. Can circulating microRNAs become the test of choice for colorectal cancer? Curr Colorectal Cancer Rep. 2014;10:403–10.
Article
Google Scholar
Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hou N, Huo D, Dignam JJ. Prevention of colorectal cancer and dietary management. Chin Clin Oncol. 2013;2:13.
PubMed
PubMed Central
Google Scholar
Stewart B, Wild CP. World cancer report 2014. Geneva: World Health Organisation; 2017.
Google Scholar
Winawer SJ, Zauber AG. The advanced adenoma as the primary target of screening. Gastrointest Endosc Clin. 2002;12:1–9.
Article
Google Scholar
Levine JS, Ahnen DJ. Adenomatous polyps of the colon. N Engl J Med. 2006;355:2551–7.
Article
PubMed
CAS
Google Scholar
Pickhardt PJ, Kim DH, Pooler BD, Hinshaw JL, Barlow D, Jensen D, Reichelderfer M, Cash BD. Assessment of volumetric growth rates of small colorectal polyps with CT colonography: a longitudinal study of natural history. Lancet Oncol. 2013;14:711–20.
Article
PubMed
PubMed Central
Google Scholar
Mundade R, Imperiale TF, Prabhu L, Loehrer PJ, Lu T. Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience. 2014;1:400.
Article
PubMed
PubMed Central
Google Scholar
Rothwell PM, Wilson M, Elwin C-E, Norrving B, Algra A, Warlow CP, Meade TW. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376:1741–50.
Article
PubMed
CAS
Google Scholar
Yang T, Owen JL, Lightfoot YL, Kladde MP, Mohamadzadeh M. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol Med. 2013;19:714–25.
Article
PubMed
CAS
Google Scholar
Arends MJ. Pathways of colorectal carcinogenesis. Appl Immunohistochem Mol Morphol. 2013;21:97–102.
PubMed
CAS
Google Scholar
Cheetham S, Gruhl F, Mattick J, Dinger M. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 2013;108:2419.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mazeh H, Mizrahi I, Ilyayev N, Halle D, Brücher BL, Bilchik A, Protic M, Daumer M, Stojadinovic A, Avital I. The diagnostic and prognostic role of microRNA in colorectal cancer—a comprehensive review. J Cancer. 2013;4:281.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie X, Tang B, Xiao Y-F, Xie R, Li B-S, Dong H, Zhou J-Y, Yang S-M. Long non-coding RNAs in colorectal cancer. Oncotarget. 2016;7:5226.
PubMed
Google Scholar
Zhang J, Zhang A, Wang Y, Liu N, You Y, Kang C, Pu P. New insights into the roles of ncRNA in the STAT3 pathway. Future Oncol. 2012;8:723–30.
Article
PubMed
CAS
Google Scholar
Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354–61.
Article
PubMed
CAS
Google Scholar
Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1:391–407.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z, Wu F, Mo Y-Y. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41:4976–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P, Rinn JL. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 1071;2010:464.
Google Scholar
Zhang L, Yang F, Yuan J-H, Yuan S-X, Zhou W-P, Huo X-S, Xu D, Bi H-S, Wang F, Sun S-H. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2012;34:577–86.
Article
PubMed
CAS
Google Scholar
Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282:24731–42.
Article
PubMed
CAS
Google Scholar
Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis R, Nishida N, Gafà R, Song J, Guo Z. CCAT2, a novel non-coding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013. https://doi.org/10.1101/gr.152942.112.
Article
PubMed
PubMed Central
Google Scholar
Zheng J, Li X-D, Wang P, Liu X-B, Xue Y-X, Hu Y, Li Z, Li Z-Q, Wang Z-H, Liu Y-H. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. Oncotarget. 2015;6:25339.
PubMed
PubMed Central
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
Article
PubMed
CAS
Google Scholar
Wu WK, Wang XJ, Cheng AS, Luo MX, Ng SS, To KF, Chan FK, Cho CH, Sung JJ, Yu J. Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis. Crit Rev Oncol Hematol. 2013;86:251–77.
Article
PubMed
Google Scholar
Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol. 2012;13:e249–58.
Article
PubMed
CAS
Google Scholar
Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific MicroRNAs in colorectal Neoplasia11Note: Susan M. O’Connor and Nicholas G. van Holst Pellekaan contributed equally to this work. Mol Cancer Res. 2003;1:882–91.
PubMed
CAS
Google Scholar
Cawley K, Logue SE, Gorman AM, Zeng Q, Patterson J, Gupta S, Samali A. Disruption of microRNA biogenesis confers resistance to ER stress-induced cell death upstream of the mitochondrion. PLoS ONE. 2013;8:e73870.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz LA, Sjoblom T, Barad O, Bentwich Z, Szafranska AE, Labourier E. The colorectal microRNAome. Proc Natl Acad Sci. 2006;103:3687–92.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang C-J, Zhou Z-G, Wang L, Yang L, Zhou B, Gu J, Chen H-Y, Sun X-F. Clinicopathological significance of microRNA-31,-143 and-145 expression in colorectal cancer. Dis Markers. 2009;26:27–34.
Article
PubMed
PubMed Central
Google Scholar
Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjøt L, Wiuf C, Sørensen FJ, Kruhøffer M, Laurberg S. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 2008;68:6416–24.
Article
PubMed
CAS
Google Scholar
Bandrés E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;5:29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang H, Li Y, Huang Q, Ren X, Hu H, Sheng H, Lai M. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ. 2011;18:1702.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Y, Song Y, Wang Z, Yue Z, Xu H, Xing C, Liu Z. Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance. J Gastrointest Surg. 2010;14:1170–9.
Article
PubMed
Google Scholar
Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirchner T, Hermeking H. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and β-catenin predicts distant metastasis of colon cancer. Clin Cancer Res. 2012. https://doi.org/10.1158/1078-0432.CCR-12-1703.
Article
PubMed
Google Scholar
Lu Y-X, Yuan L, Xue X-L, Zhou M, Liu Y, Zhang C, Li J-P, Zheng L, Hong M, Li X-N. Regulation of colorectal carcinoma stemness, growth, and metastasis by an miR-200c-Sox2–negative feedback loop mechanism. Clin Cancer Res. 2014. https://doi.org/10.1158/1078-0432.CCR-13-2348.
Article
PubMed
PubMed Central
Google Scholar
Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci. 2008;105:13556–61.
Article
PubMed
PubMed Central
Google Scholar
Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U, Hermeking H. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial–mesenchymal transitions. Cell Cycle. 2011;10:4256–71.
Article
PubMed
CAS
Google Scholar
Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124:1853–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hahn S, Jackstadt R, Siemens H, Hünten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial–mesenchymal transition. EMBO J. 2013;32:3079–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Okayama H, Schetter AJ, Harris CC. MicroRNAs and inflammation in the pathogenesis and progression of colon cancer. Dig Dis. 2012;30(suppl 2):9–15.
Article
PubMed
Google Scholar
Nagy ZB, Wichmann B, Kalmár A, Galamb O, Barták BK, Spisák S, Tulassay Z, Molnár B. Colorectal adenoma and carcinoma specific miRNA profiles in biopsy and their expression in plasma specimens. Clin Epigenetics. 2017;9:22 (PMID: PMC5310023).
Article
PubMed
PubMed Central
CAS
Google Scholar
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861.
Article
PubMed
CAS
Google Scholar
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17:1712.
Article
PubMed Central
CAS
Google Scholar
Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genom. 2014. https://doi.org/10.1155/2014/970607.
Article
Google Scholar
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu WK, Law PT, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ. MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis. 2010;32:247–53.
Article
PubMed
CAS
Google Scholar
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376.
Article
PubMed
CAS
Google Scholar
Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 2010;38:323–32.
Article
PubMed
CAS
Google Scholar
Eamens AL, Smith NA, Curtin SJ, Wang M-B, Waterhouse PM. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA. 2009;15:2219–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
van den Berg A, Mols J, Han J. RISC-target interaction: cleavage and translational suppression. Biochim Biophys Acta (BBA) Gene Regul Mech. 2008;1779:668–77.
Article
CAS
Google Scholar
Wakiyama M, Takimoto K, Ohara O, Yokoyama S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 2007;21:1857–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lizarbe MA, Calle-Espinosa J, Fernández-Lizarbe E, Fernández-Lizarbe S, Robles MÁ, Olmo N, Turnay J. Colorectal cancer: from the genetic model to posttranscriptional regulation by noncoding RNAs. BioMed Res Int. 2017. https://doi.org/10.1155/2017/7354260.
Article
PubMed
PubMed Central
Google Scholar
Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem. 2011;67:129–39.
Article
PubMed
CAS
Google Scholar
Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol. 2015;25:137–47.
Article
PubMed
CAS
Google Scholar
MacFarlane L-A, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genom. 2010;11:537–61.
Article
CAS
Google Scholar
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.
Article
PubMed
CAS
Google Scholar
Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, Marchesini J, Mascellani N, Sana ME, Jarour RA. Reprogramming of miRNA networks in cancer and leukemia. Genome Res. 2010;20:589–99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.
Article
PubMed
CAS
Google Scholar
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci. 2006. https://doi.org/10.1073/pnas.0506654102.
Article
PubMed
PubMed Central
Google Scholar
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–47.
Article
PubMed
CAS
Google Scholar
Weiss CN, Ito K. A macro view of microRNAs: the discovery of microRNAs and their role in hematopoiesis and hematologic disease. Int Rev Cell Mol Biol. 2017;334:99–175.
Article
PubMed
PubMed Central
Google Scholar
Paladini L, Fabris L, Bottai G, Raschioni C, Calin GA, Santarpia L. Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res. 2016;35:103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Calvin Li S, T Vu L, Jianying Luo J, F Zhong J, Li Z, A Dethlefs B, G Loudon W, H Kabeer M. Tissue elasticity bridges cancer stem cells to the tumor microenvironment through micrornas: implications for a “watch-and-wait” approach to cancer. Curr Stem Cell Res Ther. 2017;12:455–70.
Google Scholar
Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel J-P. MicroRNAs: molecular features and role in cancer. Front Biosci. 2012;17:2508.
Article
PubMed Central
CAS
Google Scholar
Gambari R, Brognara E, Spandidos DA, Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: new trends in the development of miRNA therapeutic strategies in oncology. Int J Oncol. 2016;49:5–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I, Emuowhochere R. Biology of glucose metabolization in cancer cells. J Oncol Sci. 2017;3:45–51.
Google Scholar
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834.
Article
PubMed
CAS
Google Scholar
Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, Sugihara K, Mori M. Over-and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009;34:1069–75.
PubMed
CAS
Google Scholar
Rossi S, Kopetz S, Davuluri R, Hamilton SR, Calin GA. MicroRNAs, ultraconserved genes and colorectal cancers. Int J Biochem Cell Biol. 2010;42:1291–7.
Article
PubMed
CAS
Google Scholar
Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer. 2009;8:102.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yoshida GJ. Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res. 2018;37:173.
Article
PubMed
PubMed Central
Google Scholar
Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015;34:1.
Article
CAS
Google Scholar
Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006;66:7390–4.
Article
PubMed
CAS
Google Scholar
Xishan Z, Ziying L, Jing D, Gang L. MicroRNA-320a acts as a tumor suppressor by targeting BCR/ABL oncogene in chronic myeloid leukemia. Sci Rep. 2015;5:12460.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.
Article
PubMed
PubMed Central
Google Scholar
Carden T, Singh B, Mooga V, Bajpai P, Singh KK. Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J Biol Chem. 2017;292:20694–706.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang Y, Xu X, Zhang M, Wang X, Bai X, Li H, Kan L, Zhou Y, Niu H, He P. MicroRNA-663a is downregulated in non-small cell lung cancer and inhibits proliferation and invasion by targeting JunD. BMC Cancer. 2016;16:315.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bader AG. miR-34—a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70:5923–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Slabáková E, Culig Z, Remšík J, Souček K. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 2017;8:e3100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xia X, Yang B, Zhai X, Liu X, Shen K, Wu Z, Cai J. Prognostic role of microRNA-21 in colorectal cancer: a meta-analysis. PLoS ONE. 2013;8:e80426.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kjaer-Frifeldt S, Hansen T, Nielsen B, Joergensen S, Lindebjerg J, Soerensen F, dePont Christensen R, Jakobsen A. The prognostic importance of miR-21 in stage II colon cancer: a population-based study. Br J Cancer. 2012;107:1169.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kang WK, Lee JK, Oh ST, Lee SH, Jung CK. Stromal expression of miR-21 in T3-4a colorectal cancer is an independent predictor of early tumor relapse. BMC Gastroenterol. 2015;15:2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang J-X, Song W, Chen Z-H, Wei J-H, Liao Y-J, Lei J, Hu M, Chen G-Z, Liao B, Lu J. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol. 2013;14:1295–306.
Article
PubMed
CAS
Google Scholar
Nielsen BS, Jørgensen S, Fog JU, Søkilde R, Christensen IJ, Hansen U, Brünner N, Baker A, Møller S, Nielsen HJ. High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis. 2011;28:27–38.
Article
PubMed
CAS
Google Scholar
Lee KS, Nam SK, Koh J, Kim D-W, Kang S-B, Choe G, Kim WH, Lee HS. Stromal expression of microRNA-21 in advanced colorectal cancer patients with distant metastases. J Pathol Transl Med. 2016;50:270.
Article
PubMed
PubMed Central
Google Scholar
Zuo Q, Cao L, Yu T, Gong L, Wang L, Zhao Y, Xiao B, Zou Q. MicroRNA-22 inhibits tumor growth and metastasis in gastric cancer by directly targeting MMP14 and Snail. Cell Death Dis. 2015;6:e2000.
Article
PubMed
PubMed Central
CAS
Google Scholar
Song SJ, Pandolfi PP. miR-22 in tumorigenesis. Cell Cycle. 2014;13:11–2.
Article
PubMed
CAS
Google Scholar
Yang F, Hu Y, Liu H-X, Wan Y-JY. MiR-22-silenced cyclin A expression in colon and liver cancer cells is regulated by bile acid receptor. J Biol Chem. 2015;290:6507–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wan W-N, Zhang Y-Q, Wang X-M, Liu Y-J, Zhang Y-X, Que Y-H, Zhao W-J, Li P. Down-regulated miR-22 as predictive biomarkers for prognosis of epithelial ovarian cancer. Diagn Pathol. 2014;9:178.
Article
PubMed
PubMed Central
CAS
Google Scholar
James AB, Fadaka AO, Magbagbeola OA, Oturu A, Kolawole OO, Ogunjimi A, Oshodi T, Habeebu M, Onawoga FO, Ajogbeje EO. Haematological and miRNAs (let-7g, miR-21, miR-141) expression modulation profile in serum samples of Human prostate cancer. FASEB J. 2017;31:757.12.
Google Scholar
Li P, Xu Q, Zhang D, Li X, Han L, Lei J, Duan W, Ma Q, Wu Z, Wang Z. Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS Lett. 2014;588:705–12.
Article
PubMed
CAS
Google Scholar
Yang G, Zhang R, Chen X, Mu Y, Ai J, Shi C, Liu Y, Shi C, Sun L, Rainov NG. MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status. J Mol Med. 1037;2011:89.
Google Scholar
Wang Z, Liu M, Zhu H, Zhang W, He S, Hu C, Quan L, Bai J, Xu N. miR-106a is frequently upregulated in gastric cancer and inhibits the extrinsic apoptotic pathway by targeting FAS. Mol Carcinog. 2013;52:634–46.
Article
PubMed
CAS
Google Scholar
Syed DN, Suh Y, Afaq F, Mukhtar H. Dietary agents for chemoprevention of prostate cancer. Cancer Lett. 2008;265:167–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tili E, Michaille J-J, Alder H, Volinia S, Delmas D, Latruffe N, Croce CM. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol. 2010;80:2057–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yoo YA, Kang MH, Kim JS, Oh SC. Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-β-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis. 2008;29:480–90.
Article
PubMed
CAS
Google Scholar
Tili E, Michaille J-J, Adair B, Alder H, Limagne E, Taccioli C, Ferracin M, Delmas D, Latruffe N, Croce CM. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis. 2010;31:1561–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kumazaki M, Noguchi S, Yasui Y, Iwasaki J, Shinohara H, Yamada N, Akao Y. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J Nutr Biochem. 2013;24:1849–58.
Article
PubMed
CAS
Google Scholar
Gonçalves P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab. 2013;14:994–1008.
Article
PubMed
CAS
Google Scholar
Sengupta S, Muir JG, Gibson PR. Does butyrate protect from colorectal cancer? J Gastroenterol Hepatol. 2006;21:209–18.
Article
PubMed
CAS
Google Scholar
Fung KY, Cosgrove L, Lockett T, Head R, Topping DL. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr. 2012;108:820–31.
Article
PubMed
CAS
Google Scholar
Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH, Chang EB. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS ONE. 2011;6:e16221.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu S, Liu L, Chang EB, Wang J-Y, Raufman J-P. Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells. Mol Cancer. 2015;14:180.
Article
PubMed
PubMed Central
CAS
Google Scholar
Humphreys KJ, Cobiac L, Le Leu RK, Van der Hoek MB, Michael MZ. Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol Carcinog. 2013;52:459–74.
Article
PubMed
CAS
Google Scholar
Williams CD, Whitley BM, Hoyo C, Grant DJ, Iraggi JD, Newman KA, Gerber L, Taylor LA, McKeever MG, Freedland SJ. A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutr Res. 2011;31:1–8.
Article
PubMed
CAS
Google Scholar
Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93:1073–9.
Article
PubMed
CAS
Google Scholar
Davidson LA, Wang N, Shah MS, Lupton JR, Ivanov I, Chapkin RS. n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis. 2009;30:2077–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mandal CC, Ghosh-Choudhury T, Dey N, Choudhury GG, Ghosh-Choudhury N. miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis. 2012;33:1897–908.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD, Allgayer H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep. 2011;31:185–97.
Article
PubMed
CAS
Google Scholar
Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S, Aboukameel A, Padhye S, Philip PA, Sarkar FH. Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS ONE. 2011;6:e17850.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther. 2008;7:464–73.
Article
PubMed
CAS
Google Scholar
Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, Wang Z, Philip PA, Sarkar FH. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;70:3606–17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X, Yin H. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun. 2010;399:1–6.
Article
PubMed
CAS
Google Scholar
Parasramka MA, Ho E, Williams DE, Dashwood RH. MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog. 2012;51:213–30.
Article
PubMed
CAS
Google Scholar
Saini S, Majid S, Dahiya R. Diet, microRNAs and prostate cancer. Pharm Res. 2010;27:1014–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gandini S, Boniol M, Haukka J, Byrnes G, Cox B, Sneyd MJ, Mullie P, Autier P. Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int J Cancer. 2011;128:1414–24.
Article
PubMed
CAS
Google Scholar
Alvarez-Díaz S, Valle N, Ferrer-Mayorga G, Lombardía L, Herrera M, Domínguez O, Segura MF, Bonilla F, Hernando E, Muñoz A. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum Mol Genet. 2012;21:2157–65.
Article
PubMed
CAS
Google Scholar
Padi SK, Zhang Q, Rustum YM, Morrison C, Guo B. MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology. 2013;145:437–46.
Article
PubMed
CAS
Google Scholar
Tinggi U. Selenium: its role as antioxidant in human health. Environ Health Prev Med. 2008;13:102–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sarveswaran S, Liroff J, Zhou Z, Nikitin AY, Ghosh J. Selenite triggers rapid transcriptional activation of p53, and p53-mediated apoptosis in prostate cancer cells: implication for the treatment of early-stage prostate cancer. Int J Oncol. 2010;36:1419–28.
PubMed
CAS
Google Scholar
Nian H, Bisson WH, Dashwood W-M, Pinto JT, Dashwood RH. α-Keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells. Carcinogenesis. 2009;30:1416–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Y, VandenBoom TG, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70:1486–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Majid S, Dar AA, Saini S, Chen Y, Shahryari V, Liu J, Zaman MS, Hirata H, Yamamura S, Ueno K. Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res. 2010;70:2809–18.
Article
PubMed
CAS
Google Scholar
Parker L, Taylor D, Kesterson J, Metzinger D, Gercel-Taylor C. Modulation of microRNA associated with ovarian cancer cells by genistein. Eur J Gynaecol Oncol. 2009;30:616–21.
PubMed
CAS
Google Scholar
Edvardsson K, Nguyen-Vu T, Kalasekar SM, Pontén F, Gustafsson J-Å, Williams C. Estrogen receptor β expression induces changes in the microRNA pool in human colon cancer cells. Carcinogenesis. 2013;34:1431–41.
Article
PubMed
CAS
Google Scholar
Okuda T, Yoshida T, Hatano T. Ellagitannins as active constituents of medicinal plants. Planta Med. 1989;55:117–22.
Article
PubMed
CAS
Google Scholar
Wen XY, Wu SY, Li ZQ, Liu ZQ, Zhang JJ, Wang GF, Jiang ZH, Wu SG. Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of MiRNAs in HepG2 cancer cells. Phytother Res. 2009;23:778–84.
Article
PubMed
CAS
Google Scholar
Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R. Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev. 2012;11:390–8.
Article
PubMed
Google Scholar
Steinbach G, Heymsfield S, Olansen NE, Tighe A, Holt PR. Effect of caloric restriction on colonic proliferation in obese persons: implications for colon cancer prevention. Cancer Res. 1994;54:1194–7.
PubMed
CAS
Google Scholar
Kritchevsky D. Colorectal cancer: the role of dietary fat and caloric restriction. Mutat Res Fundam Mol Mech Mutagen. 1993;290:63–70.
Article
CAS
Google Scholar
Fontana L, Mitchell SE, Wang B, Tosti V, van Vliet T, Veronese N, Bertozzi B, Early DS, Maissan P, Speakman JR. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell. 2018;17:e12746.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.
Article
PubMed
CAS
Google Scholar
Mooi W, Peeper D. Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med. 2006;355:1037–46.
Article
PubMed
CAS
Google Scholar
Ghosh K, Capell BC. The senescence-associated secretory phenotype: critical effector in skin cancer and aging. J Invest Dermatol. 2016;136:2133–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rao SG, Jackson JG. SASP: tumor suppressor or promoter? Yes! Trends Cancer. 2016;2:676–87.
Article
PubMed
Google Scholar
Vaughan S, Jat PS. Deciphering the role of nuclear factor-κB in cellular senescence. Aging (Albany NY). 2011;3:913.
Article
CAS
Google Scholar
Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006;441:431.
Article
PubMed
CAS
Google Scholar
Hursting SD, Dunlap SM, Ford NA, Hursting MJ, Lashinger LM. Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab. 2013;1:10.
Article
PubMed
PubMed Central
Google Scholar
Stattin P, Palmqvist R, Söderberg S, Biessy C, Ardnor B, Hallmans G, Kaaks R, Olsson T. Plasma leptin and colorectal cancer risk: a prospective study in Northern Sweden. Oncol Rep. 2003;10:2015–21.
PubMed
Google Scholar
Harvey AE, Lashinger LM, Otto G, Nunez NP, Hursting SD. Decreased systemic IGF-1 in response to calorie restriction modulates murine tumor cell growth, nuclear factor-κB activation, and inflammation-related gene expression. Mol Carcinog. 2013;52:997–1006.
Article
PubMed
CAS
Google Scholar
Harvey AE, Lashinger LM, Hays D, Harrison LM, Lewis K, Fischer SM, Hursting SD. Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-κB activation, and inflammation-related gene expression in an insulin-like growth factor-1—dependent manner. PLoS ONE. 2014;9:e94151.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jin L, Lim M, Zhao S, Sano Y, Simone BA, Savage JE, Wickstrom E, Camphausen K, Pestell RG, Simone NL. The metastatic potential of triple-negative breast cancer is decreased via caloric restriction-mediated reduction of the miR-17 ~ 92 cluster. Breast Cancer Res Treat. 2014;146:41–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Devlin KL, Sanford T, Harrison LM, LeBourgeois P, Lashinger LM, Mambo E, Hursting SD. Stage-specific MicroRNAs and their role in the anticancer effects of calorie restriction in a rat model of ER-positive luminal breast cancer. PLoS ONE. 2016;11:e0159686.
Article
PubMed
PubMed Central
CAS
Google Scholar