Zhou J, Wang H, Fu F, Li Z, Feng Q, Wu W, Liu Y, Wang C, Chen Y. Spectrum of PALB2 germline mutations and characteristics of PALB2-related breast cancer: screening of 16,501 unselected patients with breast cancer and 5890 controls by next-generation sequencing. Cancer. 2020;126(14):3202–8. https://doi.org/10.1002/cncr.32905.
Article
CAS
PubMed
Google Scholar
Gompel A. Hormone and breast cancer. Presse Med. 2019;48(10):1085–91. https://doi.org/10.1016/j.lpm.2019.09.021.
Article
PubMed
Google Scholar
Engel C, Fischer C, Zachariae S, Bucksch K, Rhiem K, Giesecke J, Herold N, Wappenschmidt B, Hubbel V, Maringa M, Reichstein-Gnielinski S, Hahnen E, Bartram CR, Dikow N, Schott S, Speiser D, Horn D, Fallenberg EM, Kiechle M, Quante AS, Vesper AS, Fehm T, Mundhenke C, Arnold N, Leinert E, Just W, Siebers-Renelt U, Weigel S, Gehrig A, Wockel A, Schlegelberger B, Pertschy S, Kast K, Wimberger P, Briest S, Loeffler M, Bick U, Schmutzler RK. Breast cancer risk in BRCA1/2 mutation carriers and noncarriers under prospective intensified surveillance. Int J Cancer. 2020;146(4):999–1009. https://doi.org/10.1002/ijc.32396.
Article
CAS
PubMed
Google Scholar
Shoemaker ML, White MC, Wu M, Weir HK, Romieu I. Differences in breast cancer incidence among young women aged 20–49 years by stage and tumor characteristics, age, race, and ethnicity, 2004–2013. Breast Cancer Res Treat. 2018;169(3):595–606. https://doi.org/10.1007/s10549-018-4699-9.
Article
PubMed
PubMed Central
Google Scholar
Brewer HR, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. Family history and risk of breast cancer: an analysis accounting for family structure. Breast Cancer Res Treat. 2017;165(1):193–200. https://doi.org/10.1007/s10549-017-4325-2.
Article
PubMed
PubMed Central
Google Scholar
Jacquez GM, Barlow J, Rommel R, Kaufmann A, Rienti MJ, AvRuskin G, Rasul J. Residential mobility and breast cancer in Marin County, California, USA. Int J Environ Res Public Health. 2013;11(1):271–95. https://doi.org/10.3390/ijerph110100271.
Article
PubMed
PubMed Central
Google Scholar
Gill J, Yogavel M, Kumar A, Belrhali H, Jain SK, Rug M, Brown M, Maier AG, Sharma A. Crystal structure of malaria parasite nucleosome assembly protein: distinct modes of protein localization and histone recognition. J Biol Chem. 2009;284(15):10076–87. https://doi.org/10.1074/jbc.M808633200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagashio R, Kuchitsu Y, Igawa S, Kusuhara S, Naoki K, Satoh Y, Ichinoe M, Murakumo Y, Saegusa M, Sato Y. Prognostic significance of NAP1L1 expression in patients with early lung adenocarcinoma. Biomed Res. 2020;41(3):149–59. https://doi.org/10.2220/biomedres.41.149.
Article
CAS
PubMed
Google Scholar
Kidd M, Modlin IM, Mane SM, Camp RL, Eick G, Latich I. The role of genetic markers–NAP1L1, MAGE-D2, and MTA1–in defining small-intestinal carcinoid neoplasia. Ann Surg Oncol. 2006;13(2):253–62. https://doi.org/10.1245/ASO.2006.12.011.
Article
PubMed
Google Scholar
Aydin MA, Gul G, Kiziltan R, Algul S, Kemik O. Nucleosome assembly protein 1-like 1 (NAP1L1) in colon cancer patients: a potential biomarker with diagnostic and prognostic utility. Eur Rev Med Pharmacol Sci. 2020;24(20):10512–7. https://doi.org/10.26355/eurrev_202010_23403.
Article
CAS
PubMed
Google Scholar
Queiroz C, Song F, Reed KR, Al-Khafaji N, Clarke AR, Vimalachandran D, Miyajima F, Pritchard DM, Jenkins JR. NAP1L1: a novel human colorectal cancer biomarker derived from animal models of apc inactivation. Front Oncol. 2020;10:1565. https://doi.org/10.3389/fonc.2020.01565.
Article
PubMed
PubMed Central
Google Scholar
Zhai W, Ma J, Zhu R, Xu C, Zhang J, Chen Y, Chen Z, Gong D, Zheng J, Chen C, et al. MiR-532-5p suppresses renal cancer cell proliferation by disrupting the ETS1-mediated positive feedback loop with the KRAS-NAP1L1/P-ERK axis. Br J Cancer. 2018;119(5):591–604. https://doi.org/10.1038/s41416-018-0196-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Gao W, Pu L, Zhang L, Han G, Zuo X, Zhang Y, Li X, Shen H, Wu J, et al. PRDM8 exhibits antitumor activities toward hepatocellular carcinoma by targeting NAP1L1. Hepatology. 2018;68(3):994–1009. https://doi.org/10.1002/hep.29890.
Article
CAS
PubMed
Google Scholar
Le Y, Kan A, Li QJ, He MK, Chen HL, Shi M. NAP1L1 is a prognostic biomarker and contribute to doxorubicin chemotherapy resistance in human hepatocellular carcinoma. Cancer Cell Int. 2019;19:228. https://doi.org/10.1186/s12935-019-0949-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Xiang B, Liu Y, Wang Y, Kan H. LncRNA CDKN2B-AS1 promotes tumor growth and metastasis of human hepatocellular carcinoma by targeting let-7c-5p/NAP1L1 axis. Cancer Lett. 2018;437:56–66. https://doi.org/10.1016/j.canlet.2018.08.024.
Article
CAS
PubMed
Google Scholar
Ovčevska I, Zupanec N, Urlep Ž, Vranič A, Matos B, Stokin CL, Muyldermans S, Myers MP, Buzdin AA, Petrov I, et al. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget. 2017;8(27):44141–58. https://doi.org/10.18632/oncotarget.17390.
Article
Google Scholar
Schimmack S, Taylor A, Lawrence B, Alaimo D, Schmitz-Winnenthal H, Büchler MW, Modlin IM, Kidd M. A mechanistic role for the chromatin modulator, NAP1L1, in pancreatic neuroendocrine neoplasm proliferation and metastases. Epigenetics Chromatin. 2014;7:15. https://doi.org/10.1186/1756-8935-7-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka T, Hozumi Y, Iino M. Goto K (2017) NAP1L1 regulates NF-kappaB signaling pathway acting on anti-apoptotic Mcl-1 gene expression. Biochim Biophys Acta Mol Cell Res. 1864;10:1759–68. https://doi.org/10.1016/j.bbamcr.2017.06.021.
Article
CAS
Google Scholar
Nakamura H, Kambe H, Egawa T, Kimura Y, Ito H, Hayashi E, Yamamoto H, Sato J, Kishimoto S. Partial purification and characterization of human hepatoma-derived growth factor. Clin Chim Acta. 1989;183(3):273–84. https://doi.org/10.1016/0009-8981(89)90361-6.
Article
CAS
PubMed
Google Scholar
Liu C, Wang L, Jiang Q, Zhang J, Zhu L, Lin L, Jiang H, Lin D, Xiao Y, Fang W, Guo S. Hepatoma-derived growth factor and DDX5 promote carcinogenesis and progression of endometrial cancer by activating beta-catenin. Front Oncol. 2019;9:211. https://doi.org/10.3389/fonc.2019.00211.
Article
PubMed
PubMed Central
Google Scholar
Chen SC, Kung ML, Hu TH, Chen HY, Wu JC, Kuo HM, Tsai HE, Lin YW, Wen ZH, Liu JK, Yeh MH, Tai MH. Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial–mesenchymal transition. J Pathol. 2012;228(2):158–69. https://doi.org/10.1002/path.3988.
Article
CAS
PubMed
Google Scholar
Wang S, Fang W. Increased expression of hepatoma-derived growth factor correlates with poor prognosis in human nasopharyngeal carcinoma. Histopathology. 2011;58(2):217–24. https://doi.org/10.1111/j.1365-2559.2010.03739.x.
Article
PubMed
Google Scholar
Fu Q, Song X, Liu Z, Deng X, Luo R, Ge C, Li R, Li Z, Zhao M, Chen Y, Lin X, Zhang Q, Fang W. miRomics and proteomics reveal a miR-296–3p/PRKCA/FAK/Ras/c-Myc feedback loop modulated by HDGF/DDX5/beta-catenin complex in lung adenocarcinoma. Clin Cancer Res. 2017;23(20):6336–50. https://doi.org/10.1158/1078-0432.CCR-16-2813.
Article
CAS
PubMed
Google Scholar
Min X, Wen J, Zhao L, Wang K, Li Q, Huang G, Liu J, Zhao X. Role of hepatoma-derived growth factor in promoting de novo lipogenesis and tumorigenesis in hepatocellular carcinoma. Mol Oncol. 2018;12(9):1480–97. https://doi.org/10.1002/1878-0261.12357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao YY, Lin L, Li YH, Jiang HP, Zhu LT, Deng YR, Lin D, Chen W, Zeng CY, Wang LJ, Chen SC, Jiang QP, Liu CH, Fang WY, Guo SQ. ZEB1 promotes invasion and metastasis of endometrial cancer by interacting with HDGF and inducing its transcription. Am J Cancer Res. 2019;9(11):2314–30.
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, Jiang Z, Zhang Y, Xu G, Zhang J, Zhou J, Sun B, Zou X, Wang S. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69(7):1193–205. https://doi.org/10.1136/gutjnl-2019-319639.
Article
CAS
PubMed
Google Scholar
Ren H, Chu Z, Mao L. Antibodies targeting hepatoma-derived growth factor as a novel strategy in treating lung cancer. Mol Cancer Ther. 2009;8(5):1106–12. https://doi.org/10.1158/1535-7163.MCT-08-0779.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Ma MZ, Ren H, Liu Z, Edelman MJ, Pan H, Mao L. Anti-HDGF targets cancer and cancer stromal stem cells resistant to chemotherapy. Clin Cancer Res. 2013;19(13):3567–76. https://doi.org/10.1158/1078-0432.CCR-12-3478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin YW, Huang ST, Wu JC, Chu TH, Huang SC, Lee CC, Tai MH. Novel HDGF/HIF-1alpha/VEGF axis in oral cancer impacts disease prognosis. BMC Cancer. 2019;19(1):1083. https://doi.org/10.1186/s12885-019-6229-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Celegato M, Messa L, Goracci L, Mercorelli B, Bertagnin C, Spyrakis F, Suarez I, Cousido-Siah A, Travé G, Banks L, Cruciani G, Palù G, Loregian A. A novel small-molecule inhibitor of the human papillomavirus E6–p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Lett. 2020;1(470):115–25. https://doi.org/10.1016/j.canlet.2019.10.046.
Article
CAS
Google Scholar
Deng T, Shen P, Li A, Zhang Z, Yang H, Deng X, Peng X, Hu Z, Tang Z, Liu J, Hou R, Liu Z, Fang W. CCDC65 as a new potential tumor suppressor induced by metformin inhibits activation of AKT1 via ubiquitination of ENO1 in gastric cancer. Theranostics. 2021;11(16):8112–28. https://doi.org/10.7150/thno.54961.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Qiu J, Yang H, Sun G, Hu Y, Zhu D, Deng Z, Wang X, Tang J, Jiang R. Kinesin family member 15 promotes cancer stem cell phenotype and malignancy via reactive oxygen species imbalance in hepatocellular carcinoma. Cancer Lett. 2020;482:112–25. https://doi.org/10.1016/j.canlet.2019.11.008.
Article
CAS
PubMed
Google Scholar
Lin X, Zuo S, Luo R, Li Y, Yu G, Zou Y, Zhou Y, Liu Z, Liu Y, Hu Y, Xie Y, Fang W, Liu Z. HBX-induced miR-5188 impairs FOXO1 to stimulate beta-catenin nuclear translocation and promotes tumor stemness in hepatocellular carcinoma. Theranostics. 2019;9(25):7583–98. https://doi.org/10.7150/thno.37717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng C, Li W, Peng X, Liu X, Zhang Z, Liu Z, Deng T, Luo R, Fang W, Deng X. miR-1254 induced by NESG1 inactivates HDGF/DDX5-stimulated nuclear translocation of beta-catenin and suppresses NPC metastasis. Mol Ther Methods Clin Dev. 2021;20:615–24. https://doi.org/10.1016/j.omtm.2021.02.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Fang W. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3beta/beta-catenin signaling pathway. Ebiomedicine. 2019;48:386–404. https://doi.org/10.1016/j.ebiom.2019.08.040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Peng X, Li Y, Liu S, Hou R, Zhang Y, Zuo S, Liu Z, Luo R, Li L, Fang W. Positive feedback loop of FAM83A/PI3K/AKT/c-Jun induces migration, invasion and metastasis in hepatocellular carcinoma. Biomed Pharmacother. 2020;123:109780. https://doi.org/10.1016/j.biopha.2019.109780.
Article
CAS
PubMed
Google Scholar
Lin X, Li AM, Li YH, Luo RC, Zou YJ, Liu YY, Liu C, Xie YY, Zuo S, Liu Z, Liu Z, Fang WY. Silencing MYH9 blocks HBx-induced GSK3beta ubiquitination and degradation to inhibit tumor stemness in hepatocellular carcinoma. Signal transduct target ther. 2020;5(1):13. https://doi.org/10.1038/s41392-020-0111-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou Y, Lin X, Bu J, Lin Z, Chen Y, Qiu Y, Mo H, Tang Y, Fang W, Wu Z. Timeless-stimulated miR-5188-FOXO1/beta-catenin-c-Jun feedback loop promotes stemness via ubiquitination of beta-catenin in breast cancer. Mol Ther. 2020;28(1):313–27. https://doi.org/10.1016/j.ymthe.2019.08.015.
Article
CAS
PubMed
Google Scholar
Zhao M, Xu P, Liu Z, Zhen Y, Chen Y, Liu Y, Fu Q, Deng X, Liang Z, Li Y, Lin X, Fang W. Dual roles of miR-374a by modulated c-Jun respectively targets CCND1-inducing PI3K/AKT signal and PTEN-suppressing Wnt/beta-catenin signaling in non-small-cell lung cancer. Cell Death Dis. 2018;9(2):78. https://doi.org/10.1038/s41419-017-0103-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ai B, Kong X, Wang X, Zhang K, Yang X, Zhai J, Gao R, Qi Y, Wang J, Wang Z, Fang Y. LINC01355 suppresses breast cancer growth through FOXO3-mediated transcriptional repression of CCND1. Cell Death Dis. 2019;10(7):502. https://doi.org/10.1038/s41419-019-1741-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhen Y, Fang W, Zhao M, Luo R, Liu Y, Fu Q, Chen Y, Cheng C, Zhang Y, Liu Z. miR-374a-CCND1-pPI3K/AKT-c-JUN feedback loop modulated by PDCD4 suppresses cell growth, metastasis, and sensitizes nasopharyngeal carcinoma to cisplatin. Oncogene. 2017;36(2):275–85. https://doi.org/10.1038/onc.2016.201.
Article
CAS
PubMed
Google Scholar
Ouafik L, Berenguer-Daize C, Berthois Y. Adrenomedullin promotes cell cycle transit and up-regulates cyclin D1 protein level in human glioblastoma cells through the activation of c-Jun/JNK/AP-1 signal transduction pathway. Cell Signal. 2009;21(4):597–608. https://doi.org/10.1016/j.cellsig.2009.01.001.
Article
CAS
PubMed
Google Scholar
Cicatiello L, Addeo R, Sasso A, Altucci L, Petrizzi VB, Borgo R, Cancemi M, Caporali S, Caristi S, Scafoglio C, Teti D, Bresciani F, Perillo B, Weisz A. Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol Cell Biol. 2004;24(16):7260–74. https://doi.org/10.1128/MCB.24.16.7260-7274.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar