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MiR-539 inhibits proliferation 
and migration of triple-negative breast cancer 
cells by down-regulating LAMA4 expression
Zhi‑Xue Yang1†, Bo Zhang2†, Jinrong Wei1, Guo‑Qin Jiang1, Yan‑Lin Wu1, Bing‑Jing Leng1 and Chun‑Gen Xing1*

Abstract 

Background: Recent studies have shown that laminin subunit alpha 4 (LAMA4) plays an important role in carcino‑
genesis. However, its molecular biological function in triple‑negative breast cancer (TNBC) has not been entirely 
clarified. This study investigated the expression of LAMA4 in TNBC and its effect on cell proliferation, migration and 
invasion. Furthermore, we also identified the potential miRNA directly targeting LAMA4.

Methods: Western blot, Real‑time quantitative PCR (qPCR) and immunohistochemical staining (IHC) were used to 
detect the expression of LAMA4 in TNBC. The effects of LAMA4 on TNBC cell proliferation, migration and invasion were 
also explored in vitro. The potential miRNA that targets LAMA4 was determined by dual luciferase reporter assay and 
verified by qPCR and western blot analysis.

Results: Our study showed LAMA4 mRNA (p = 0.001) and protein (p = 0.005) expression in TNBC tissue samples 
were elevated compared with adjacent normal tissue samples, and LAMA4 was mainly expressed in the cytoplasm of 
breast carcinoma cells. Knockdown of LAMA4 inhibited TNBC cell proliferation, migration and invasion in vitro. Moreo‑
ver, further study revealed that LAMA4 was a putative target of miR‑539, and miR‑539 negatively regulated LAMA4 
expression by directly targeting its 3′‑UTR.

Conclusions: Our study suggested that miR‑539 suppressed the expression of LAMA4. LAMA4 plays an important 
role in tumor progression and may be an important target in treatment of TNBC.
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Background
Breast cancer is the most common type of cancer in 
women worldwide and its incidence is increasing [1, 2]. 
Importantly, triple-negative breast cancer (TNBC) is the 
most invasive and aggressive one among the breast can-
cer subtypes [3], lacking expression of α-estrogen, pro-
gesterone and HER2(erbB2)receptors and characterized 
by high mitotic rate, increased lymphocytic infiltrate,high 
grade and large tumor size [4, 5]. The lack of targeted 
therapies and the poor prognosis of patients with TNBC 
have fostered a major effort to discover actionable 

molecular targets to treat patients with these tumors, but 
the clinical and molecular heterogeneity within TNBC 
subtype makes the treatment of these patients even 
more challenging [5, 6]. It is generally recognized that 
the improvement of prognosis, prediction of response 
to treatment, and development of novel effective thera-
peutic approaches for TNBC is urging, which may largely 
depend on the introduction into clinical practice of novel 
specific markers involved in the development of TNBC. 
Therefore, identifying biological markers of TNBC pro-
gression could be meaningful for the prevention of 
TNBC and providing new therapeutic strategies for the 
disease.

As a key molecule of the extracellular matrix, laminins 
provide a delicate microenvironment for cell functions 
[7], more than 15 laminin isoforms are known to date and 
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the expression of specific isoforms may change in certain 
pathological conditions [8, 9]. Among these, Laminin a4 
(LAMA4) is widely distributed in developing and adult 
human tissues, and mainly localized to mesenchyme-
derived tissues [10]. It has been reported that LAMA4 
plays a role in formation and function of endothelium, 
transmigration of inflammatory cells through endothe-
lium and invasion of certain tumors [11–13]. Besides, 
LAMA4 is thought to play a role in cell migration, wound 
healing and angiogenesis [13, 14]. So we are curious 
about its role in TNBC and think it may be important for 
TNBC progress.

MicroRNAs (miRNAs) are a class of endogenous non-
coding single-stranded RNAs, which regulate amounts 
of protein expressed from coding RNAs by translational 
repression or by cleavage of the target mRNA due to 
base pairing with the 3′-untranslated region (UTR) [15]. 
MiRNAs were found to be linked to essential physiologic 
processes such as proliferation, differentiation and apop-
tosis, and to several diseases including cancer [16, 17]. In 
recent years, the fundamental role of miRNAs in cancer 
progression and metastasis is beginning to be elucidated. 
MiRNA expression studies, especially large-scale profil-
ing, have provided evidence that the aberrant expression 
of miRNA is associated with human breast cancer [18, 
19]. These finds will aid in early diagnosis using these 
miRNAs as markers, and functional studies of spe-
cific miRNAs, determining their targets, function and 
regulation.

The objective of this article is to explore novel spe-
cific markers involved in the development of TNBC and 
design therapies that target them so as to prevent sys-
temic cancer.

Methods
Clinical specimens
TNBC and adjacent normal breast tissues were anony-
mously collected from The Second Affiliated Hospital of 
Soochow University (n = 40). Written informed consent 
was obtained from each patient. All of the procedures 
performed in this study were approved by the Ethics 
Committee of The Second Affiliated Hospital of Soochow 
University and we have obtained consent to publish from 
the patients provided the tissues.

Immunohistochemistry assay
Immunohistochemical analysis was done to study the 
expression of LAMA4 in TNBC tissues and the adja-
cent normal breast tissues. Formalin-fixed, paraffin-
embedded tissue was freshly cut (3 mm). Sections were 
deparaffinized in xylene and re-hydrated in a graded 
series of ethanol. Endogenous peroxidase activity was 

blocked with 3% hydrogen peroxide. Antigen retrieval 
was achieved by boiling slides in 10  mM citrate buffer 
(pH 6.0) for 20 min. 10% non-immune goat serum was 
used to block nonspecific binding. Sections were then 
incubated in a moist chamber with primary rabbit anti-
human LAMA4 antibody (1:200; Cat. No. 10465-1-AP, 
Proteintech, USA) for 30 min at room temperature, fol-
lowed by a secondary antibody (peroxidase labeled poly-
mer conjugated to goat anti-rabbit immunoglobulin) for 
30 min (DakoCytomation, Denmark). Rabbit serum was 
used as negative control. All slides were developed with 
diaminobenzidine (DAB). Slides were counterstained 
with hematoxylin, dehydrated through a graded series of 
ethanol, immersed in xylene and mounted.

Cell culture
TNBC cell line BT-549 and Human Embryonic Kid-
ney 293 (HEK-293T) cells were purchased from Chi-
nese Academy of Science Cell Bank (Shanghai, People’s 
Republic of China). BT-549 and HEK-293T cells were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM; 
HyClone, Logan, UT, USA) with 10% fetal bovine serum 
(FBS). All media contained 1% penicillin/streptomycin. 
All cell lines were incubated at 37 °C with 5%  CO2.

Transfection
For miRNA-539-overexpression, cells were seeded at 
∼  70% confluence into six-well plate and transiently 
transfected with miR-539 mimic or a scrambled miRNA 
to a final concentration of 50  nM using 5  μL Lipo-
fectamine 2000 transfection reagent (Thermo Fisher 
Scientific, Waltham, MA, USA, USA) following the man-
ufacturer’s instruction.

Adenovirus infection
On the day before virus infection, BT-549 cells were 
plated in each well of six-well plates. When the cells 
reached approximately 70% confluence, the culture 
medium was aspirated and the cell monolayer was 
washed with prewarmed sterile phosphate-buffed saline 
(PBS). Cells were incubated with indicated virus 5  μL 
LV (Lentiviral vector–derived)-LAMA4-shRNAs (short 
hairpin RNA) or LV-NC (negative control), IO:109, 
GenePharma Co., Ltd, Shanghai, People’s Republic of 
China), respectively. After adsorption for 4  h, 2  ml of 
fresh growth medium was added and cells were placed in 
the incubator for additional 48 h. The cells analysis and 
other experiments were performed.

Western blotting
Western blotting was performed as described in our pre-
vious study [20]. Briefly, cells were harvested and rinsed 
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with PBS. Tumor tissues, adjacent normal breast tissues 
and cell extracts were prepared using lysis buffer (con-
taining 8 M urea, 10% SDS (sodium dodecyl sulfate), 1 M 
DTT and protease inhibitors) and centrifuged at 12,000g 
at 4 °C. Total protein concentration was measured using 
the BCA (bicinchoninic acid) assay. Cellular extracts con-
taining 30 μg total protein were electrophoresed on 10% 
SDS-PAGE gels and then transferred onto polyvinylidene 
difluoride membranes (Invitrogen). The membranes 
were incubated for 2  h in blocking solution contain-
ing 5% non-fat dry milk to inhibit non-specific binding, 
then incubated with primary anti-LAMA4 (1:2000; pro-
teintech, USA) and anti-β-actin FLAG (1:5000; Abcam, 
Cambridge, MA, USA) antibodies for 2  h. After several 
washes in PBS, the membranes were incubated with 
HRP-conjugated secondary antibodies (1:4000; Abcam, 
Cambridge, United Kingdom). The blots were developed 
using an ECL chemiluminescent kit (Beyotime, Haimen, 
China), and exposed to X-ray film for 30  s–2  min. The 
densities of protein bands were analyzed using PDQuest 
software version 7.2.0 (Bio-Rad Laboratories, Inc., Her-
cules, CA, USA). The expression of LAMA4 protein was 
normalized to β-actin.

Quantitative PCR
Total cellular or tissues’ RNA was isolated using TRIzol 
(Invitrogen) according to the manufacturer’s instructions. 
For reverse transcription (RT)-PCR, 5  μg of total RNA 
per sample was reverse transcribed using the Reverse 
Transcription Reaction Kit (Fermentas, St. Leon-Rot, 
Germany) according to the manufacturer’s instructions. 
The cDNA (1 μl) was amplified by PCR (pre-denaturation 
step at 95 °C for 5 min; followed by 40 cycles of 95 °C for 
30  s, 60  °C for 30  s, and 72  °C for 30  s; then 72  °C for 
10 min). The primers were as follows: LAMA4, 5′-AAG 
CAG AGT CTC TGT GAT GGCAG-3′ and 5′-GTC CTG 
TTC AAC TCG ATG AAAGC-3′;GAPDH, 5′-TCC TGT 
GGC ATC CAC GAA ACT-3′ and 5′-GAA GCA TTT GCG 
GTG GAC GAT-3′. The final, normalized results were 
calculated by dividing the relative transcript levels of the 
target genes by the relative transcript levels of GAPDH.

MTT assay
BT-549 cells (5.0  ×  103/well) were seeded into five 
96-well culture plates (6-parallel wells/group). On each 
day, 200 μL MTT (5 mg/mL) was added to each well, and 
the cells were incubated for additional 4 h at 37 °C. Then 
the reaction was stopped by lysing the cells with 150 μL 
DMSO for 5 min. Optical densities were determined on 
a Versamax microplate reader (Molecular Devices, Sun-
nyvale, CA) at 490 nm.

Wound healing assay
BT-549 cells were seeded in 6-well dishes at a density of 
1  ×  106/well and treated with LV-NC or LV-LAMA4-
shRNA3. After 24 and 48  h of incubation, a scratch in 
the cell monolayer was made using a sterile micropi-
pette tip. Cells were washed twice with fresh media, 
and images were captured using an inverted microscope 
(IX71; Olympus, Center Valley, PA, USA) at 24 and 48 h 
after scratching. The rate of wound healing was estimated 
by measuring the distance between the borders of the 
wound.

Matrigel invasion assay
Invasion assays were performed by using the same tran-
swell chamber with growth factor-reduced Matrigel. 
Briefly, 1 × 105 cells infected with LV- NC or LV-LAMA4-
shRNA3 per well were seeded onto Matrigel-coated 
inserts and allowed to invade for 48  h. Cells remaining 
above the insert membrane were removed with a cotton 
swab, and cells that invaded through the Matrigel were 
fixed in 25% methanol. After washing in cold 1 ×  PBS, 
the cells were stained with 0.1% crystal violet in 25% 
methanol. The inserts were washed three times with 1 × 
PBS and then air-dried. The numbers of invaded cells 
on the representative sections were counted using an 
inverted microscope (IX71; Olympus) at 10× magnifica-
tion. Five fields were counted per filter in each group; the 
number of invaded cells for each sample represents the 
average of triplicate wells over three experiments.

Luciferase reporter assay
The dual luciferase experiment was performed in Human 
Embryonic Kidney 293 (HEK-293T) cells. A 1507  bp 
fragment of the LAMA4 3′-UTR (corresponding to the 
positions of 5847–7355 of the NM_002290.4) was ampli-
fied by PCR using the cDNA of HEK-293T cells as a tem-
plate and cloned into the pGL3-basic vector (Promega, 
Madison, WI) to generate pGL3- LAMA4-3′-UTR plas-
mid. Mutation of the putative miR-539 target sequences 
within the 3′ UTR of LAMA4 in the pGL3-LAMA4-3′-
UTR plasmid was generated using the QuikChange Site-
Directed Mutagenesis kit (Stratagene). Plasmid DNA was 
subsequently isolated from recombinant colonies and 
sequenced to ensure the authenticity and direction of the 
inserted LAMA4 3′UTR. HEK-293T cells were cultured 
in six-well plates at 80% confluence and cotransfected 
with 2  μg pGL3-LAMA4-3′-UTR plasmid or pGL3-
LAMA4-3′-UTR-mutant plasmid together with 70  nM 
miR-539 mimic or a scrambled miRNA using 4 μL Lipo-
fectamine 2000 reagent according to the manufacturer’s 
protocol. 10  ng pRL-TK vector (Promega, USA) was 
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co-transfected as internal control for normalization of 
the transfection efficiency. Cells were lysed and assayed 
for luciferase activity at 48  h after transfection using a 
Dual-Luciferase Assay kit (E1910; Promega). Changes in 
the expression of Renilla luciferase were normalized rela-
tive to Firefly luciferase.

Statistical analyses
Statistical analyses were performed using SPSS version 
21.0 (SPSS Inc., Chicago, IL, USA). All data were pre-
sented as the mean ±  standard deviation. The Student 
t test was used to determine significance of changes 
between two groups. Mann–Whitney test following 
Friedman ANOVA was used for multiple comparisons 
where appropriate. Normality was verified for all data. 
Values of p  <  0.05 were considered to be statistically 
significant.

Results
Expression of LAMA4 is increased at both mRNA 
and protein level in TNBC tissues
To determine whether LAMA4 plays a pivotal role in 
TNBC, western blotting assays and quantitative PCR 
were performed in TNBC and adjacent normal tis-
sues. The representative western blot results in 7 cases 
are shown in Fig. 1a. The average LAMA4 protein level 
in 40 TNBC tissues was significantly higher than that 

in corresponding adjacent normal tissues (Fig.  1b, 
p =  0.005, n =  40 for each group, Student t test). The 
mRNA level of LAMA4 in TNBC was significantly 
higher compared with adjacent normal tissues (Fig.  1c, 
p = 0.001, n = 40, Student’ t test). Immunohistochemical 
analysis was performed to study its expression and loca-
tion, the result showed LAMA4 was mainly expressed 
in the cytoplasm of breast carcinoma cells, 32 patients 
of the samples had a high expression of the LAMA4 
(Fig. 1d) while the other 8 patients have a low expression 
(Fig. 1e). In adjacent normal tissues, there were negative 
expression of LAMA4 (Fig.  1f ). Taken together, these 
data suggest that LAMA4 was mostly overexpressed in 
TNBC tissues compared with adjacent normal tissues.

Lentiviral vector–derived shRNA approach against LAMA4 
suppresses LAMA4 expression both at protein and mRNA 
level
To further determine whether LAMA4 is involved in the 
regulation of development of TNBC, we have developed a 
highly efficient method of lentivirus-mediated delivery of 
siRNA targeting LAMA4 for gene silencing. We designed 
three LV-LAMA4-shRNAs using different sequences, 
LV-LAMA4-shRNA1 (AAG TCT CCA TGA TGT TTG 
ATG) LV-LAMA4-shRNA2 (AAG TGC GGC TAG ATT 
CTC AGA) and LV-LAMA4-shRNA3 (AAG GCC TTC 
ACG TCT CTG AGC), then we transfected BT-549 cells 
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Fig. 1 Expression of LAMA4 is increased at both protein and mRNA level in TNBC tissues. a The representative western blot results in 7 cases are 
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with the LV-LAMA4-shRNAs or LV-NC. As shown in 
Fig. 2a, the infection efficiency could reach more than 90 
percent both in LV-LAMA4-shRNAs and LV-NC groups. 
Then western blotting assays and quantitative RT-PCR 
were performed and found LV-LAMA4-shRNA3 had a 
highest efficiency of gene silence. After 48 h after infec-
tion, the protein levels were detected. The data showed 
that LV-LAMA4-shRNA1 and LV-LAMA4-shRNA3 
could effectively silenced the expression of LAMA4 both 
in protein and mRNA level but not the LAMA4-shRNA2, 
and LV-LAMA4-shRNA3 had a better gene silence effi-
ciency (n = 4 for each group, *p < 0.05, Mann–Whitney 
test following Friedman ANOVA).

Silence of LAMA4 inhibits TNBC cancer cell proliferation, 
decreased cell migration and slowed cell invasion in vitro
The proliferation of BT-549 cells was measured by 
MTT assay. After incubated for the indicated time, the 
BT-549 cells were infected by LV-NC or LV-LAMA4-
shRNA3. The results showed that the cell proliferation 
of LV-LAMA4-shRNA3 infected cells were inhibited at 
48 h even lasted to 72 h, but neither at 24 h nor before 
compared with the control group cells or LV-NC cells 
(Fig.  3a, *p  <  0.05, n =  3 for each group, Mann–Whit-
ney test following Friedman ANOVA). Cell migration 
was evaluated using wound healing and transwell assays. 
Results showed that LV-LAMA4-shRNA3 inhibited the 

invasive ability of BT-549 cells by approximately 38.8%, 
as the Invasive cells per field in LV-LAMA4-siRNA3 
group was 78 ± 13 while it was 121 ± 22 in LV-NC group 
(Fig. 3b, *p < 0.05, N = 4 for each group, Student t test). 
Cell mobility was detected also by the wound healing 
assay. Cells were grown to confluence in 6-well plates, 
wounded, and transfected with LV-NC and LV-LAMA4-
shRNA3 respectively. Scratch closure was monitored for 
48  h; microscopic images taken at 0, 24 and 48  h post-
scratching are shown. At 24 and 48 h after wounding, the 
healing ability of LV-LAMA4-shRNA3-infected BT-549 
cells significantly lagged behind the LV-NC -infected 
BT-549 cells. Images were captured at a magnification 
of × 10, and the columns represent the means ± SEMs 
of four independent experiments at 48  h. The results 
showed that LV-LAMA4-siRNA3 could inhibit the cell 
migration rate to 43% (Fig. 3c, *p < 0.05, N = 4 for each 
group, Student t test).

MiR‑539 was decreased in TNBC tissues and has an inverse 
correlation with the expression with LAMA4
To identify the microRNA that targets LAMA4, we 
queried several microRNA target databases, such as 
miRanda, TargetScan and miRBase, and predicted that 
probable related miRNAs bind directly to the 3′-UTR of 
LAMA4, including: miRNA-539, miRNA-217, miRNA-
129-5p, miR-196b, miR-196a, miR-499-5p, miR-21, 
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miR-590-5p, miR-300, miR-381, miR-125a-5p, miR-
410, miR-543, miR-495, miR-33a, miR-33b, miR-197, 
miR-397-5p, miR-494, miR-19a, miR-19b and so on. 
Among these, miRNA-539 caught our attention, as it 
has been reported involved in several kinds of cancers 
but haven’t in breast cancer. We tested the expression 

of miRNA-539 in 40 pairs of TNBC and the adjacent 
normal tissues by the use of qPCR. The results showed 
miRNA-539 was decreased in TNBC tissues compared 
with the adjacent normal tissues (Fig. 4a, n = 40). We 
further analyzed the expression of LAMA4 and miR-
539 in clinical specimens with Pearson correlation 
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analysis, which showed an inverse correlation between 
them (Fig. 4b;  r2 = 0.2465, p < 0.05).

MiR‑539 targets LAMA4 and miR‑539 mimic could reduce 
the expression of LAMA4 both in miRNA and protein level
To verify if miR-539 targets LAMA4, we researched the 
potential sequences in the 3′UTR of LAMA4 and found 
that the 3′UTR of LAMA4 contained the complementary 
sequences of miR-539 (Fig.  5a). Accordingly, we tested 
whether enhanced miR-539 expression could change the 
3′UTR of LAMA4-regulated luciferase activity by dual 
luciferase assay. Results showed that transfection of 293T 
cells with miR-539 mimic changed the LAMA4 regu-
lated luciferase activity, a significant decrease in the Rluc/
Fluc ratio was found when co-transfected with miR-539 
mimic in the wild type but not in mutant type of LAMA4 
compared with negative control group (NC) (Fig.  5b). 
qPCR results demonstrated that upregulation of miR-539 

notably reduced the expression of target gene (LAMA4) 
(Fig. 5c, N =  4 for each group, Student t test). Further-
more, Western blotting results also showed decreased 
LAMA4 (Fig.  5d) expression, suggesting that miR-539 
targets to LAMA4 3′-UTR and inhibits its expression.

Overexpression of miR‑539 inhibits TNBC cancer cell 
proliferation, migration and invasion in vitro
To study the role of miR-539 in the cancer development, 
BT-549 cells were transfected with miR-539 mimic or a 
scrambled miRNA (NC). The results showed that the cell 
proliferation of miR-539 mimic transfected cells was sig-
nificantly inhibited at 48 h and lasted to 72 h, but neither 
at 24  h nor before compared either with the NC group 
cells (Fig.  6a, *p  <  0.05, n =  4 for each group, Mann–
Whitney test following Friedman ANOVA). To study if 
miR-539 was involved in tumor cells’ motility, cell migra-
tion was evaluated using wound healing and transwell 
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Page 8 of 10Yang et al. Cancer Cell Int  (2018) 18:16 

assays. Results showed that BT-549 cells transfected with 
miR-539 mimic significantly inhibited the invasive abil-
ity, as the invasive cells per field in LV-LAMA4-shRNA3 
group was 67 ±  16 while it was 134 ±  31 in NC group 
(Fig. 6b, *p < 0.05, N = 4 for each group, Student t test). 
Cell mobility was detected by the wound healing assay. At 
24 and 48  h after wounding, the healing ability of miR-
539-mimics-transfected BT-549 cells lagged behind the 
NC-transfected BT-549 cells. Images were captured at 
a magnification of × 10, and the columns represent the 
means ± SEMs of four independent experiments at 48 h. 
The results showed that miR-539 mimic could inhibited 
the cell migration rate (Fig. 6c, *p < 0.05, N = 4 for each 
group, Student t test).

Discussion
Management of TNBC is a challenge to the clinician 
because of its aggressive behavior, poor outcome, and 
absence of targeted therapies. TNBCs have an increased 
propensity to metastasize and high rate of relapse, the 
majority of deaths from this disease are a result of dis-
tant disease [21]. A number of genes and proteins have 
been identified with altered expression in TNBC, like 
EGFR (epidermal growth factor receptor) [22, 23], PARPs 
[poly (ADP-ribose) polymerase] [24, 25], VEGF (vascular 

endothelial growth factor) [26], p53 [27, 28], TOP-2A 
(Topoisomerase 2 Alpha) [29] and so on. Till now, some 
of the markers have been tested for diagnostic and prog-
nostic purposes. However, the vast majority of existing 
markers of tumor invasion and progression have not yet 
been put through a rigorous pre-clinical and clinical test-
ing. Over time new targets that were specifically related 
to TNBC are being discovered for the treatment of this 
disease and is challenging [19].

In this study, we found LAMA4 was over-expressed 
in TNBC, the results were in consistent with a study 
by Ross et al. They found LAMA4 could promote can-
cer cell proliferation and increased LAMA4 expression 
marks the transition of human pre-malignant breast 
lesions to malignant carcinomas, and tumoral LAMA4 
overexpression predicts reduced relapse-free survival in 
ER-negative patients [30]. But its role in the progression 
of TNBC is unknown. Through transfecting BT-549 
cells with LV-LAMA4-shRNA in  vitro, the expression 
of LAMA4 was reduced, and the cell proliferation, cell 
migration and invasion were inhibited. But the detail 
was unknown. As master regulators of gene expression, 
miRNAs are involved in modulating multiple cellular 
pathways, including cell proliferation, differentiation, 
and apoptosis, and thus may function as oncogenes 
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the cell migration rate, *p < 0.05, N = 4, Student t test



Page 9 of 10Yang et al. Cancer Cell Int  (2018) 18:16 

or tumor suppressing genes [31, 32]. Recent studies 
have proved that the aberrant expression of miRNAs 
contribute to the proliferation, invasion or metastatic 
behavior of human breast cancer [33]. For example, 
HER2 and HER3 (erbB3), which are significantly corre-
lated with decreased disease-specific survival in breast 
cancer patients, could be suppressed by miR-125a or 
miR-125b [34]. MiRNAs’ role in TNBC also has been 
discovered, for instance, the miR-146a and miR-26a 
were reported over-expressed in triple negative breast 
cancer and miR-10b and miR-153 were significantly 
associated to lymph node metastases occurrence in 
TNBC [35]. These results highlighted the role of miR-
NAs in breast cancer research. So we put our emphasis 
on miRNAs that modulated the expression of LAMA4, 
thus to find an effective intervention target to treat 
TNBC. MiR-539 is an important miRNA that has been 
reported to interfere progression of several tumors, it 
was found to be prognostic for distant metastasis-free 
survival in colon cancer [36]. Low expressions of miR-
539 were found significantly associated with advanced 
TNM stage; metastasis; recurrence or reduced over-
all survival of osteosarcoma patients [37]. Besides, 
miR-539 was found to impair tumorigenesis of HCC 
cells in  vivo, coupled with reduced expression of anti-
apoptotic proteins Bcl-2 and Bcl-xL [38], but its role 
in TNBC is unknown. In this study, we found miR-539 
was decreased in TNBC tissues and has an inverse cor-
relation with the expression with LAMA4. MiR-539 
mimic could reduce the expression of LAMA4 both at 
mRNA and protein level, so we identified LAMA4 was 
probably modulated by miR-539. But the mechanism 
needs further investigation.

Conclusions
This study’s results indicate that LAMA4 was over-
expressed in TNBC and inhibition the expression of 
which could suppress the TNBC cells’ migration and 
invasion. MiR-539 has an inverse correlation with the 
expression of LAMA4 and miR-539 mimic could inhibit 
TNBC cells’ ability of proliferation, migration and inva-
sion. So LAMA4 might be the new target for treatment 
of TNBC. Further studies are needed to determine 
the molecular mechanisms of LAMA4 and the clinical 
value of miR-539 in TNBC.
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