Casticin inhibits the proliferation and viability of NOZ and SGC996 cells
Cell proliferation was evaluated using the CCK-8 assay, which demonstrated that NOZ and SGC996 cell proliferation rates were significantly inhibited by casticin in a dose- and time-dependent manner (Fig. 1b–d). However, casticin treatment did not significantly inhibit 293T viability (Fig. 1e). The inhibition of casticin-treated GBC cells was moderate at 48 h, and the IC50 of NOZ and SGC996 cells was approximately 2 µM at 48 h. Therefore, we selected 1, 4 and 7 µM as the concentrations to use in subsequent experiments. The colony formation assay was used to detect the proliferation of single cell. The NOZ and SGC996 cells were treated with at various concentrations (0, 1, 4, 7 µM) for about 2 weeks. As shown in Fig. 1f, g, the number and size of colonies derived from casticin-treated cells were markedly smaller compared with the control group. These data demonstrate that casticin can inhibit the proliferation and viability of GBC cells.
Casticin induces mitochondrial-dependent apoptosis in NOZ and SGC996 cells
We investigated the effect of casticin on apoptosis in GBC cells using flow cytometry and Hoechst 33342 staining. Compared with the control group, the percentages of casticin-treated cells in the early and late apoptosis stages were strikingly elevated in a dose-dependent manner (Fig. 2a–c). In a subsequent experiment, we treated NOZ and SGC996 cells with various concentrations (0, 1, 4, 7 µM) for 48 h, and stained the cells with Hoechst 33342. As shown in Fig. 2d, the casticin-treated cells exhibited markedly increased chromatin condensation and fragmentation compared with the control group, in which cells were round and homogeneously stained. The result was consistent with the flow cytometry data, and together, these data indicate that casticin can induce apoptosis in NOZ and SGC996 cells. TUNEL analysis also showed more apoptotic cells in casticin-treatment GBC cells (Fig. 2e).
Mitochondrial damage to cells results in perturbation of the mitochondrial membrane potential (ΔΨm) [15]. We evaluated changes in the ΔΨm in NOZ and SGC996 cells using Rhodamine 123 staining, as the decrease in the intensity of Rhodamine 123 staining reflects mitochondrial membrane potential and integrity. As shown in Fig. 3a, b, ΔΨm decreased in a dose-dependent manner, indicating that casticin induces mitochondrial-dependent apoptosis.
Caspases play critical roles in apoptosis initiation and maintenance [16, 17]. We explored the potential mechanism of casticin-induced apoptosis using western blot analysis. As shown in Figs. 3c and 4d, cleaved caspase-3, -9, -PARP, Bax and p27 were upregulated following exposure to casticin in a dose-dependent manner, whereas, Bcl-2, p-Akt and Bcl-2/Bax level significantly decreased compared with the control group. To confirm the results, we evaluated cell viability after treatment with casticin in the presence or absence of Z-VAD-FMK, a caspase inhibitor. As shown in Fig. 3d, Z-VAD-FMK can abolish casticin cytotoxicity in GBC cells. Together, these results indicate that casticin induces mitochondrial-dependent apoptosis in NOZ and SGC996 cells.
Casticin induces G0/G1 arrest and inhibits proliferation regulated by an inactive AKT pathway
To determine whether casticin influences cell cycle progression, we investigated cell cycle distribution by flow cytometry. The results indicated that the proportions of G0/G1 cells increased in a dose-dependent manner in NOZ and SGC996 cells, indicating that casticin induced G0/G1 arrest (Fig. 4a–c). To further investigate the effect of casticin on cell cycle progression, we examined cycle-related protein expression using western blot analysis. Casticin treatment resulted in decreased levels of cyclinD1 and CDK4, consistent with a G0/G1 cell cycle arrest (Fig. 4d). A recent study identified p27 as an important cyclin-dependent kinase inhibitor that inhibits the activation of cyclin D-CDK4 complexes and induces cell cycle arrest at the G0/G1 and G2/M phases [18]. In addition, Akt pathway regulates cell cycle progression and cell proliferation by influencing p27, and the results presented in Fig. 4d was consistent with these findings.
To determine if casticin-induced proliferation inhibition was regulated by inhibiting of Akt activity, we evaluated cell viability after treatment with casticin in the presence or absence of LY294002, a PI3K/Akt inhibitor. As shown in Fig. 4e, LY294002 enhanced GBC cells death. To further confirm the results, we transiently transfected wild-type Akt and constitutively active Akt into GBC cells, and then we treated with casticin and evaluated the viability. As shown in Fig. 4f, overexpression of wild-type Akt and constitutively active Akt can abolish casticin cytotoxicity in GBC cells.
Therefore, we conclude that casticin induces G0/G1 arrest via Akt signaling pathway, and that the modulation of Akt signaling also accounts for the anti-proliferative effect of casticin.
Casticin inhibits tumor growth in vivo
To evaluate the anti-cancer effect of casticin in vivo, we injected mice with 10% DMSO + 90% PBS (control group) or casticin at a concentration of either 10 or 20 mg/kg every 2 days after their inoculation with NOZ cells. We found that casticin inhibits tumor growth in a dose-dependent manner (Fig. 5a, b). Based on this observation, we performed western blot analysis, HE and IHC analysis. As shown in Fig. 5c–e, Bcl-2, cyclinD1, p-AKT and ki-67 expression levels were strikingly reduced, and Bax expression level was significantly elevated in casticin-treated groups compared with the control group. Moreover, tunel analysis showed more apoptotic cells in casticin-treated groups compared with the control group (Fig. 5f). These results are consist with the in vitro effects of casticin.
GBC is the most common and fatal cancer in biliary system, and surgical resection is the only effective treatment option. Thus, it is essential to identify novel effective treatments for GBC. Traditional Chinese medicine has been extensively used to treat various diseases for thousands of years. As an active compound isolated from Vitex Fructus, casticin can inhibit proinflammatory cytokines and inflammatory mediators, such as NO and PGE2, by blocking the activation of NF-ΚB, Akt, and MAPK signaling [19]. Recent studies have shown that casticin inhibits proliferation and induces apoptosis in various cancer cells in vitro. However, there have been no in vivo tumor xenograft studies evaluating the anti-cancer effect of casticin. In this study, we investigated NOZ and SGC996 cell proliferation and viability using CCK-8 analysis and colony formation assays. We found that casticin can inhibit NOZ and SGC996 cell proliferation, and casticin cannot significantly inhibit 293T cell viability. Therefore, we propose that casticin represents a new and promising therapeutic agent for gallbladder cancer. Moreover, we evaluated the effect of casticin treatment in mice with xenografted tumors. Based on the weight and volume of the tumors, we conclude that casticin exerts anti-cancer activity in GBC in vivo. In addition, the expression of related proteins expression using western blot analysis, HE and IHC staining, the results of which were in accordance with our in vitro assays.
We also evaluated the effect of casticin on apoptosis using flow cytometry, Hoechst 33342 staining and tunel analysis. Apoptosis is generally characterized as specific morphological changes, such as cell shrinkage, nuclear or cytoplasmic fragmentation, chromatin condensation and the formation of dense bodies that are phagocytosed by neighboring cells [20]. As shown in Fig. 2d, NOZ and SGC996 cells treated with casticin exhibited markedly increased chromatin condensation and fragmentation compared with the control group cells, which were round and homogeneously stained. In addition, the proportions of cells in early and late apoptosis stages in the casticin-treated groups were strikingly elevated in a dose-dependent manner.
Various mechanisms have been suggested to contribute to the progression of gallbladder cancer, in particular mutations in components of cell cycle or apoptotic pathways, and the processes of signal transduction, angiogenesis, invasion, and metastasis [21,22,23]. Apoptosis signaling cascades can be divided into 2 major pathways: a death-receptor-induced extrinsic pathway and a mitochondria-apoptosome-mediated intrinsic pathway [24]. In this study, we found that mitochondrial-dependent apoptosis was involved in casticin induced apoptosis. Bax and Bcl-2 are important regulators of the mitochondria-mediated apoptosis pathway, and the balance of these 2 factors is crucial for cell survival and cell death. The antiapoptotic factor Bcl-2 has been shown to prevent apoptosis by forming a heterodimer with proapoptotic factors, such as Bax, resulting in proapoptotic effects [25]. Activation of Bcl-2 family proteins can induce the mitochondrial permeabilization, and can induce caspase-9 activation, which subsequently induces the cleavage of procaspase-3 [26]. Caspase-3 is a key executioner caspase that it is capable of cleaving many important cellular substrates, including PARP [27]. In this study, we demonstrated that Bax expression significantly increased and that Bcl-2 expression decreased in response to casticin treatment both in vitro and in vivo. In addition, casticin significantly enhanced the enzymatic activity levels of caspase-3, caspase-9 and PARP (Fig. 3c). Moreover, ΔΨm decreased in a dose-dependent manner after 48 h of incubation with casticin. Together, these results suggest casticin induced apoptosis occurs through the mitochondria-dependent pathway.
The induction of cell cycle arrest at a specific checkpoint and thereby inducing apoptosis is a common mechanism for the cytotoxic effects of anticancer drugs [28]. In this study, we investigated cycle distribution using flow cytometry. The data showed that the proportion of G0/G1 cells increased in a dose-dependent manner, indicating that casticin can induce G0/G1 arrest. Cell cycle progression is highly regulated by a series of cell cycle checkpoint proteins, such as the cyclins and CDKs. Among these proteins, cyclinD and E, together with CDK2, CDK4, or CDK6, play major roles in DNA replication and mitosis by regulating G0/G1 phase of the cell cycle [29]. Therefore, we investigated the expression of cylinD1 and CDK4 in casticin-treated GBC cells and found that cyclinD1 and CDK4 contributed to G0/G1 arrest.
The PI3K/AKT pathway is one of the major signaling pathways involved in the progression of various tumors and is associated with cancer progression and invasion [30]. AKT is a key downstream effector of PI3K and is down-regulated in various cancers, including osteosarcoma and prostate cancer [31]. Previous studies have demonstrated that Akt inactivation might inhibit the expression of proteins associated with events that mediate the cancer development and progression, including apoptosis and cell cycle progression [29, 32, 33]. In our study, the results of the western blot analysis demonstrated that casticin significantly decreased p-Akt expression and that this effect was accompanied by an increase in p27. Inactivation of Akt leads to the increased expression of p27, and decreased expression of cyclinD1/CDK4 decreased, which contributed to G0/G1 arrest. Furthermore, Akt inactivation can lead to upregulation of Bad expression and the downregulation of Bcl-2 expression, which associated cell apoptosis. In summary, we suggest that the Akt signaling pathway is involved in casticin-induced cell apoptosis and cell cycle arrest.