Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
Article
PubMed
Google Scholar
Gemignani ML, Hetzel DJ. Current advances in endocrine therapy options for premenopausal women with hormone receptor positive breast cancer. Gynecol Oncol. 2017;147(1):153–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagini S. Breast Cancer: current molecular therapeutic targets and new players. Anti Cancer Agent Med. 2017;17(2):152–63.
Article
CAS
Google Scholar
Liu CY, Wu CY, Petrossian K, Huang TT, Tseng LM, Chen S. Treatment for the endocrine resistant breast cancer: current options and future perspectives. J Steroid Biochem Mol Biol. 2017;172:166–75.
Article
CAS
PubMed
Google Scholar
Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9(9):631–43.
Article
CAS
PubMed
Google Scholar
Ring A, Dowsett M. Mechanisms of tamoxifen resistance. Endocr Relat Cancer. 2004;11(4):643–58.
Article
CAS
PubMed
Google Scholar
He MJ, Zhou Z, Shah AA, Hong Y, Chen QM, Wan Y. New insights into posttranslational modifications of Hippo pathway in carcinogenesis and therapeutics. Cell Div. 2016. https://doi.org/10.1186/s13008-016-0013-6.
Article
PubMed
PubMed Central
Google Scholar
Guo LW, Teng LS. YAP/TAZ for cancer therapy: opportunities and challenges. Int J Oncol. 2015;46(4):1444–52.
Article
CAS
PubMed
Google Scholar
Zhao B, Kim J, Ye X, Lai ZC, Guan KL. Both TEAD-Binding and WW domains are required for the growth stimulation and oncogenic transformation activity of Yes-associated protein. Cancer Res. 2009;69(3):1089–98.
Article
CAS
PubMed
Google Scholar
Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 2001;15(10):1229–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim MK, Jang JW, Bae SC. DNA binding partners of YAP/TAZ. Bmb Rep. 2018;51(3):126–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen LM, Loh PG, Song HW. Structural and functional insights into the TEAD-YAP complex in the Hippo signaling pathway. Protein Cell. 2010;1(12):1073–83.
Article
CAS
PubMed
Google Scholar
Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF beta-TRCP. Gene Dev. 2010;24(1):72–85.
Article
CAS
PubMed
Google Scholar
Levy D, Adamovich Y, Reuven N, Shaul Y. Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell. 2008;29(3):350–61.
Article
CAS
PubMed
Google Scholar
Clarke BT. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev Camb Philos Soc. 1997;72(3):365–79.
Article
CAS
PubMed
Google Scholar
Qi J, Tan CK, Hashimi SM, Zulfiker AM, Good D, Wei MQ. Toad glandular secretions and skin extractions as anti-inflammatory and anticancer agents. Evid Based Compl Alt. 2014;2014:312684. https://doi.org/10.1155/2014/312684.
Article
Google Scholar
Borderud SP, Li Y, Burkhalter JE, Sheffer CE, Ostroff JS. Electronic cigarette use among patients with cancer: characteristics of electronic cigarette users and their smoking cessation outcomes. Cancer. 2014;120(22):3527–35.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Chen C, Wang SY, Zhang Y, Yin PH, Gao ZX, Xu J, Feng DX, Zuo QS, Zhao RH, et al. Bufalin inhibits HCT116 colon cancer cells and its orthotopic xenograft tumor in mice model through genes related to apoptotic and PTEN/AKT pathways. Gastroent Res Pract. 2015;2015:457193. https://doi.org/10.1155/2015/457193.
Article
Google Scholar
Zhang DM, Liu JS, Deng LJ, Chen MF, Yiu A, Cao HH, Tian HY, Fung KP, Kurihara H, Pan JX, et al. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3 K/Akt/mTOR pathway. Carcinogenesis. 2013;34(6):1331–42.
Article
CAS
PubMed
Google Scholar
Liu JS, Zhang DM, Li Y, Chen WM, Ruan ZX, Deng LJ, Wang LW, Tian HY, Yiu A, Fan CL, et al. Discovery of bufadienolides as a novel class of ClC-3 chloride channel activators with antitumor activities. J Med Chem. 2013;56(14):5734–43.
Article
CAS
PubMed
Google Scholar
Deng LJ, Peng QL, Wang LH, Xu J, Liu JS, Li YJ, Zhuo ZJ, Bai LL, Hu LP, Chen WM, et al. Arenobufagin intercalates with DNA leading to G2 cell cycle arrest via ATM/ATR pathway. Oncotarget. 2015;6(33):34258–75.
Article
PubMed
PubMed Central
Google Scholar
Chen L, Mai W, Chen M, Hu J, Zhuo Z, Lei X, Deng L, Liu J, Yao N, Huang M, et al. Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating beta-catenin. Pharmacol Res. 2017;123:130–42.
Article
CAS
PubMed
Google Scholar
Chen L, Zhang D. Reflection on the selection of doses of arenobufagin in vivo anticancer study. Pharmacol Res. 2018;128:402.
Article
PubMed
Google Scholar
Srinivas NR. Arenobufagin: a potential novel opportunity for prostate cancer treatment—intriguing mechanistic data but some questions on in vivo translatability. Pharmacol Res. 2018;128:400–1.
Article
PubMed
Google Scholar
Li M, Wu S, Liu Z, Zhang W, Xu J, Wang Y, Liu J, Zhang D, Tian H, Li Y, et al. Arenobufagin, a bufadienolide compound from toad venom, inhibits VEGF-mediated angiogenesis through suppression of VEGFR-2 signaling pathway. Biochem Pharmacol. 2012;83(9):1251–60.
Article
CAS
PubMed
Google Scholar
Zhao Z, Jia Q, Wu MS, Xie X, Wang Y, Song G, Zou CY, Tang Q, Lu J, Huang G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits growth and metastasis of osteosarcoma through GSK3beta inactivation-mediated repression of the hedgehog/Gli1 pathway. Clini Cancer Res. 2018;24(1):130–44.
Article
CAS
Google Scholar
Zhu Y, Li M, Wang X, Jin H, Liu S, Xu J, Chen Q. Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release. Cell Res. 2012;22(1):127–41.
Article
CAS
PubMed
Google Scholar
de Graaf EL, Giansanti P, Altelaar AFM, Heck AJR. Single-step enrichment by Ti4(+)-IMAC and label-free quantitation enables in-depth monitoring of phosphorylation dynamics with high reproducibility and temporal resolution. Mol Cell Proteomics. 2014;13(9):2426–34.
Article
PubMed
PubMed Central
Google Scholar
Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E, Mantovani F, Damalas A, Citro G, Sacchi A, et al. The transcriptional coactivator yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol Cell. 2005;19(3):429.
Article
CAS
Google Scholar
Keshet R, Adler J, Lax IR, Shanzer M, Porat Z, Reuven N, Shaul Y. c-Abl antagonizes the YAP oncogenic function. Cell Death Differ. 2015;22(6):935–45.
Article
CAS
PubMed
Google Scholar
Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X, et al. PML, YAP, and p73 Are components of a proapoptotic autoregulatory feedback loop. Mol Cell. 2008;32(6):803–14.
Article
CAS
PubMed
Google Scholar
Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Gene Dev. 2007;21(21):2747–61.
Article
CAS
PubMed
Google Scholar
Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24(1):72–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283(9):5496–509.
Article
CAS
PubMed
Google Scholar
Lin KC, Moroishi T, Meng ZP, Jeong HS, Plouffe SW, Sekido Y, Han JH, Park HW, Guan KL. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat Cell Biol. 2017;19(8):996–1002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muranen T, Selfors LM, Hwang J, Gallegos LL, Coloff JL, Thoreen CC, Kang SA, Sabatini DM, Mills GB, Brugge JS. ERK and p38 MAPK activities determine sensitivity to PI3 K/mTOR inhibition via regulation of MYC and YAP. Cancer Res. 2016;76(24):7168–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A, Basu S. JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis. 2010;1:e29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan SC, Qu XJ, Xu L, Che XF, Ma YJ, Zhang LY, Teng YE, Zou HW, Liu YP. Bufalin enhances TRAIL-induced apoptosis by redistributing death receptors in lipid rafts in breast cancer cells. Anti-Cancer Drug. 2014;25(6):683–9.
CAS
Google Scholar
Yan S, Qu X, Xu C, Zhu Z, Zhang L, Xu L, Song N, Teng Y, Liu Y. Down-regulation of Cbl-b by bufalin results in up-regulation of DR4/DR5 and sensitization of TRAIL-induced apoptosis in breast cancer cells. J Cancer Res Clin. 2012;138(8):1279–89.
Article
CAS
Google Scholar
Dong Y, Yin S, Li J, Jiang C, Ye M, Hu H. Bufadienolide compounds sensitize human breast cancer cells to TRAIL-induced apoptosis via inhibition of STAT3/Mcl-1 pathway. Apoptosis. 2011;16(4):394–403.
Article
CAS
PubMed
Google Scholar
Wang T, Mu L, Jin H, Zhang P, Wang Y, Ma X, Pan J, Miao J, Yuan Y. The effects of bufadienolides on HER2 overexpressing breast cancer cells. Tumour Biol. 2016;37(6):7155–63.
Article
CAS
PubMed
Google Scholar
Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks DG, et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer. 2010;4:35–41.
PubMed
Google Scholar
Dhananjayan SC, Ramamoorthy S, Khan OY, Ismail A, Sun J, Slingerland J, O’Malley BW, Nawaz Z. WW domain binding protein-2, an E6-associated protein interacting protein, acts as a coactivator of estrogen and progesterone receptors. Mol Endocrinol. 2006;20(10):2343–54.
Article
CAS
PubMed
Google Scholar
Tufail R, Jorda M, Zhao W, Reis I, Nawaz Z. Loss of Yes-associated protein (YAP) expression is associated with estrogen and progesterone receptors negativity in invasive breast carcinomas. Breast Cancer Res Treat. 2012;131(3):743–50.
Article
CAS
PubMed
Google Scholar
Basu S, Totty NF, Irwin MS, Sudol M, Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 2003;11(1):11–23.
Article
CAS
PubMed
Google Scholar
Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, O’Neill E. RASSRA elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the P73 tumor suppressor protein. Mol Cell. 2007;27(6):962–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Llado V, Nakanishi Y, Duran A, Reina-Campos M, Shelton PM, Linares JF, Yajima T, Campos A, Aza-Blanc P, Leitges M, et al. Repression of intestinal stem cell function and tumorigenesis through direct phosphorylation of beta-catenin and Yap by PKC zeta. Cell Rep. 2015;10(5):740–54.
Article
CAS
Google Scholar
Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL, Chen J. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol. 2015;17(4):490–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang SP, Zhang L, Liu M, Chong R, Ding SJ, Chen YH, Dong JX. CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation. Cancer Res. 2013;73(22):6722–33.
Article
CAS
PubMed
Google Scholar
Zhao YL, Khanal P, Savage P, She YM, Cyr TD, Yang XL. YAP-induced resistance of cancer cells to antitubulin drugs is modulated by a Hippo-independent pathway. Cancer Res. 2014;74(16):4493–503.
Article
CAS
PubMed
Google Scholar