Grosser R, Cherkassky L, Chintala N, et al. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer cell. 2019;36:471–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–9.
Article
PubMed
PubMed Central
Google Scholar
Meric-Bernstam F, Larkin J, Tabernero J, et al. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet. 2021;397:1010–22.
Article
CAS
PubMed
Google Scholar
Waldman A, Fritz J, Lenardo M. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber E, Maus M, Mackall C. The emerging landscape of immune cell therapies. Cell. 2020;181:46–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yap T, Parkes E, Peng W, et al. Development of immunotherapy combination strategies in cancer. Cancer Discov. 2021;11:1368–97.
Article
PubMed
PubMed Central
Google Scholar
Neelapu S, Locke F, Bartlett N, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377:2531–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munshi N, Anderson L, Shah N, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med. 2021;384:705–16.
Article
CAS
PubMed
Google Scholar
Qin J, Johnstone T, Baturevych A, et al. Antitumor potency of an anti-CD19 chimeric antigen receptor T-cell therapy, lisocabtagene maraleucel in combination with ibrutinib or acalabrutinib. J Immunother. 2020;43:107–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheridan C. First approval in sight for Novartis’ CAR-T therapy after panel vote. Nat Biotechnol. 2017;35:691–3.
Article
CAS
PubMed
Google Scholar
Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382:1331–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finney H, Akbar A, Lawson A. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004;172:104–13.
Article
CAS
PubMed
Google Scholar
Irving B, Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991;64:891–901.
Article
CAS
PubMed
Google Scholar
Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3:388–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86:10024–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun. 1987;149:960–8.
Article
CAS
PubMed
Google Scholar
Carter P. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343–57.
Article
CAS
PubMed
Google Scholar
Gorovits B, Koren E. Immunogenicity of chimeric antigen receptor T-cell therapeutics. BioDrugs. 2019;33:275–84.
Article
PubMed
Google Scholar
Guedan S, Calderon H, Posey A, et al. Engineering and Design of Chimeric Antigen Receptors. Mol Ther Methods Clin Dev. 2019;12:145–56.
Article
CAS
PubMed
Google Scholar
Sun W, Xie J, Lin H, et al. A combined strategy improves the solubility of aggregation-prone single-chain variable fragment antibodies. Protein Expr Purif. 2012;83:21–9.
Article
CAS
PubMed
Google Scholar
Nix M, Mandal K, Geng H, et al. Surface proteomics reveals CD72 as a target for in vitro-evolved nanobody-based CAR-T cells in KMT2A/MLL1-rearranged B-ALL. Cancer Discov. 2021;11(8):2032–49.
PubMed
PubMed Central
Google Scholar
He X, Feng Z, Ma J, et al. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood. 2020;135:713–23.
Article
PubMed
PubMed Central
Google Scholar
Mo F, Duan S, Jiang X, et al. Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy. Signal Transduct Target Ther. 2021;6:80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iezzi M, Policastro L, Werbajh S, et al. Single-domain antibodies and the promise of modular targeting in cancer imaging and treatment. Front Immunol. 2018;9:273.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun S, Ding Z, Yang X, et al. Nanobody: a small antibody with big implications for tumor therapeutic strategy. IInt J Nanomed. 2021;16:2337–56.
Article
Google Scholar
Ingram J, Schmidt F, Ploegh H. Exploiting nanobodies’ singular traits. Annu Rev Immunol. 2018;36:695–715.
Article
CAS
PubMed
Google Scholar
Harmsen M, De Haard H. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77:13–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.
Article
CAS
PubMed
Google Scholar
Xiong Y, Xiao C, Li Z, et al. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev. 2021;50:6013–41.
Article
CAS
PubMed
Google Scholar
Nessler I, Khera E, Vance S, et al. Increased tumor penetration of single-domain antibody-drug conjugates improves efficacy in prostate cancer models. Cancer Res. 2020;80:1268–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura T, Harashima H. Integration of nano drug-delivery system with cancer immunotherapy. Ther Deliv. 2017;8:987–1000.
Article
CAS
PubMed
Google Scholar
Goldberg M. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer. 2019;19:587–602.
Article
CAS
PubMed
Google Scholar
Irvine D, Dane E. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol. 2020;20:321–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin J, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol. 2020;17:251–66.
Article
PubMed
PubMed Central
Google Scholar
Riley R, June C, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang P, Zhai Y, Cai Y, et al. Nanomedicine-based immunotherapy for the treatment of cancer metastasis. Adv Mater. 2019;31:e1904156.
Article
PubMed
CAS
Google Scholar
Jacoby E, Nguyen S, Fountaine T, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orlando E, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24:1504–6.
Article
CAS
PubMed
Google Scholar
Sotillo E, Barrett D, Black K, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1282–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah N, Johnson B, Schneider D, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat Med. 2020;26:1569–75.
Article
CAS
PubMed
Google Scholar
Choi B, Yu X, Castano A, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37:1049–58.
Article
CAS
PubMed
Google Scholar
Zah E, Nam E, Bhuvan V, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat Commun. 2020;11:2283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zah E, Lin M, Silva-Benedict A, et al. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res. 2016;4:498–508.
Article
CAS
PubMed
PubMed Central
Google Scholar
June C, O’Connor R, Kawalekar O, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.
Article
CAS
PubMed
Google Scholar
Mikkilineni L, Kochenderfer J. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol. 2021;18:71–84.
Article
CAS
PubMed
Google Scholar
Elsallab M, Levine B, Wayne A, et al. CAR T-cell product performance in haematological malignancies before and after marketing authorisation. Lancet Oncol. 2020;21:e104–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobson C. CD19 chimeric antigen receptor therapy for refractory aggressive B-cell lymphoma. J Clin Oncol. 2019;37:328–35.
Article
CAS
PubMed
Google Scholar
Brudno J, Kochenderfer J. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15:31–46.
Article
CAS
PubMed
Google Scholar
Porter D, Levine B, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kochenderfer J, Rosenberg S. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10:267–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh A, McGuirk J. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 2020;21:e168–78.
Article
CAS
PubMed
Google Scholar
Hong M, Clubb J, Chen Y, Engineering. CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38:473–88.
Article
CAS
PubMed
Google Scholar
Larson R, Maus M. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 2021;21:145–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rafiq S, Hackett C, Brentjens R. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17:147–67.
Article
PubMed
Google Scholar
Yu S, Yi M, Qin S, et al. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer. 2019;18:125.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bao C, Gao Q, Li L, et al. The application of nanobody in CAR-T therapy. Biomolecules. 2021;11:238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahbarizadeh F, Ahmadvand D, Moghimi S. CAR T-cell bioengineering: Single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev. 2019;141:41–6.
Article
CAS
PubMed
Google Scholar
Gong N, Sheppard N, Billingsley M, et al. Nanomaterials for T-cell cancer immunotherapy. Nat Nanotechnol. 2021;16:25–36.
Article
CAS
PubMed
Google Scholar
Yang X, Xie S, Yang X, et al. Opportunities and challenges for antibodies against intracellular antigens. Theranostics. 2019;9:7792–806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, Dougan M, Jailkhani N, et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci USA. 2019;116:7624–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4–1BB costimulatory domains. Nat Rev Clin Oncol. 2021. https://doi.org/10.1038/s41571-021-00530-z.
Article
PubMed
Google Scholar
Kawalekar OU, O’Connor RS, Fraietta JA, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44:380–90.
Article
CAS
PubMed
Google Scholar
Eyquem J, Mansilla-Soto J, Giavridis T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jureczek J, Feldmann A, Bergmann R, et al. Highly efficient targeting of EGFR-expressing tumor cells with UniCAR T cells via target modules based on cetuximab. Onco Targets Ther. 2020;13:5515–27.
Article
CAS
PubMed
PubMed Central
Google Scholar