Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424.
Article
Google Scholar
Simard EP, Ward EM, Siegel R, Jemal A. Cancers with increasing incidence trends in the United States: 1999 through 2008. Cancer J Clin. 2012;62(2):118–28.
Article
Google Scholar
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. Cancer J Clin. 2011;61(2):69–90.
Article
Google Scholar
Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 2009;27(9):1485–91.
Article
PubMed
PubMed Central
Google Scholar
Bruix J, Colombo M. Hepatocellular carcinoma: current state of the art in diagnosis and treatment. Best Pract Res Clin Gastroenterol. 2014;28(5):751.
Article
PubMed
Google Scholar
Ghosh S, Tvsvgk T, Somasundaram V, Deepti MJSJ. The domino effect-treatment of superior vena cava obstruction triggering tumor lysis syndrome: a case report. Case. 2021;3(1):44–50.
Google Scholar
Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med. 2003;348(17):1625–38.
Article
Google Scholar
Center MM, Jemal A. International trends in liver cancer incidence rates. Cancer Epidemiol Biomarkers Prev. 2011;20(11):2362–8.
Article
PubMed
Google Scholar
Creutz CE, Tomsig JL, Snyder SL, Gautier MC, Skouri F, Beisson J, Cohen J. The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans. J Biol Chem. 1998;273(3):1393–402.
Article
CAS
PubMed
Google Scholar
Tomsig JL, Creutz CE. Biochemical characterization of copine: a ubiquitous Ca2+-dependent, phospholipid-binding protein. Biochemistry. 2000;39(51):16163–75.
Article
CAS
PubMed
Google Scholar
Tomsig JL, Creutz CE. Copines: a ubiquitous family of Ca(2+)-dependent phospholipid-binding proteins. Cell Mol Life Sci. 2002;59(9):1467–77.
Article
CAS
PubMed
Google Scholar
Tomsig JL, Snyder SL, Creutz CE. Identification of targets for calcium signaling through the copine family of proteins Characterization of a coiled-coil copine-binding motif. J Biol Chem. 2003;278(12):10048–54.
Article
CAS
PubMed
Google Scholar
Yang W, Ng P, Zhao M, Wong TK, Yiu SM, Lau YL. Promoter-sharing by different genes in human genome–CPNE1 and RBM12 gene pair as an example. BMC Genomics. 2008;9:456.
Article
PubMed
PubMed Central
Google Scholar
Ilacqua AN, Price JE, Graham BN, Buccilli MJ, McKellar DR, Damer CK. Cyclic AMP signaling in Dictyostelium promotes the translocation of the copine family of calcium-binding proteins to the plasma membrane. BMC Cell Biol. 2018;19(1):13.
Article
PubMed
PubMed Central
Google Scholar
Shao Z, Ma X, Zhang Y, Sun Y, Lv W, He K, Xia R, Wang P, Gao X. CPNE1 predicts poor prognosis and promotes tumorigenesis and radioresistance via the AKT singling pathway in triple-negative breast cancer. Mol Carcinog. 2020;59(5):533–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Tang H, Zhu J, Ding H, Zeng Y, Du W, Ding Z, Song P, Zhang Y, Liu Z, et al. High expression of Copine 1 promotes cell growth and metastasis in human lung adenocarcinoma. Int J Oncol. 2018;53(6):2369–78.
CAS
PubMed
PubMed Central
Google Scholar
Liang J, Zhang J, Ruan J, Mi Y, Hu Q, Wang Z, Wei B. CPNE1 Is a Useful Prognostic Marker and Is Associated with TNF Receptor-Associated Factor 2 (TRAF2) Expression in Prostate Cancer. Med Sci Monit. 2017;23:5504–14.
Article
PubMed
PubMed Central
Google Scholar
Skawran B, Steinemann D, Becker T, Buurman R, Flik J, Wiese B, Flemming P, Kreipe H, Schlegelberger B, Wilkens L. Loss of 13q is associated with genes involved in cell cycle and proliferation in dedifferentiated hepatocellular carcinoma. Modern Pathol. 2008;21(12):1479–89.
Article
CAS
Google Scholar
Paricharttanakul NM, Saharat K, Chokchaichamnankit D, Punyarit P, Srisomsap C, Svasti J. Unveiling a novel biomarker panel for diagnosis and classification of well-differentiated thyroid carcinomas. Oncol Rep. 2016;35(4):2286–96.
Article
CAS
PubMed
Google Scholar
Jiang Z, Jiang J, Zhao B, Yang H, Wang Y, Guo S, Deng Y, Lu D, Ma T, Wang H, et al. CPNE1 silencing inhibits the proliferation, invasion and migration of human osteosarcoma cells. Oncol Rep. 2018;39(2):643–50.
CAS
PubMed
Google Scholar
Lian Q, Wang S, Zhang G, Wang D, Luo G, Tang J, Chen L, Gu J. HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics Proteomics Bioinform. 2018;16(4):269–75.
Article
Google Scholar
Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, Barretina J, Gelfand ET, Bielski CM, Li H, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569(7757):503–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pontén F, Jirström K, Uhlen M. The Human Protein Atlas–a tool for pathology. J Pathol. 2008;216(4):387–93.
Article
PubMed
Google Scholar
Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, Varambally S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (New York, NY). 2017;19(8):649–58.
Article
CAS
Google Scholar
Menyhárt O, Nagy Á, Győrffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R Soc Open Sci. 2018;5(12):181006.
Article
PubMed
PubMed Central
Google Scholar
Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956-d963.
Article
CAS
Google Scholar
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Can Res. 2017;77(21):e108–10.
Article
CAS
Google Scholar
Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, Chu KC, Wong CY, Lau CY, Chen I, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics (Oxford, England). 2019;35(20):4200–2.
Article
CAS
Google Scholar
He X, Li M, Yu H, Liu G, Wang N, Yin C, Tu Q, Narla G, Tao Y, Cheng S, et al. Loss of hepatic aldolase B activates Akt and promotes hepatocellular carcinogenesis by destabilizing the Aldob/Akt/PP2A protein complex. PLoS Biol. 2020;18(12):e3000803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang JL, Cao SW, Ou QS, Yang B, Zheng SH, Tang J, Chen J, Hu YW, Zheng L, Wang Q. The long non-coding RNA PTTG3P promotes cell growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in hepatocellular carcinoma. Mol Cancer. 2018;17(1):93.
Article
PubMed
PubMed Central
Google Scholar
Qin G, Tu X, Li H, Cao P, Chen X, Song J, Han H, Li Y, Guo B, Yang L, et al. Long Noncoding RNA p53-Stabilizing and Activating RNA Promotes p53 Signaling by Inhibiting Heterogeneous Nuclear Ribonucleoprotein K deSUMOylation and Suppresses Hepatocellular Carcinoma. Hepatology (Baltimore, MD). 2020;71(1):112–29.
Article
CAS
Google Scholar
Chen SL, Zhang CZ, Liu LL, Lu SX, Pan YH, Wang CH, He YF, Lin CS, Yang X, Xie D, et al. A GYS2/p53 Negative Feedback Loop Restricts Tumor Growth in HBV-Related Hepatocellular Carcinoma. Can Res. 2019;79(3):534–45.
Article
CAS
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. Cancer J Clin. 2016;66(1):7–30.
Article
Google Scholar
Pan JJ, Javle M, Thinn MM, Hsueh CT, Hsueh CT. Critical appraisal of the role of sorafenib in the management of hepatocellular carcinoma. Hepatic medicine : evidence and research. 2010;2:147–55.
CAS
Google Scholar
Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8(5):292–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei KR, Yu X, Zheng RS, Peng XB, Zhang SW, Ji MF, Liang ZH, Ou ZX, Chen WQ. Incidence and mortality of liver cancer in China, 2010. Chin J Cancer. 2014;33(8):388–94.
PubMed
PubMed Central
Google Scholar
de Lope CR, Tremosini S, Forner A, Reig M, Bruix J. Management of HCC. J Hepatol. 2012;56(Suppl 1):S75-87.
Article
PubMed
Google Scholar
Finn RS. Advanced HCC: emerging molecular therapies. Minerva Gastroenterol Dietol. 2012;58(1):25–34.
CAS
PubMed
Google Scholar
Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 2014;63(5):844–55.
Article
CAS
PubMed
Google Scholar
Cheal Yoo J, Park N, Lee B, Nashed A, Lee YS, Hwan Kim T, Yong Lee D, Kim A, Mi Hwang E, Yi GS, et al. 14-3-3γ regulates Copine1-mediated neuronal differentiation in HiB5 hippocampal progenitor cells. Exp Cell Res. 2017;356(1):85–92.
PubMed
Google Scholar
Elalfy M, Borlak J. Exon Array Analysis to Identify Diethyl-nitrosamine Differentially Regulated and Alternately Spliced Genes in Early Liver Carcinogenesis in the Transgenic Mouse ATT-myc Model. SciMedicine Journal. 2021;3:2704–9833.
Article
Google Scholar
Yoo JC, Park N, Choi HY, Park JY, Yi GS. JAB1 regulates CPNE1-related differentiation via direct binding to CPNE1 in HiB5 hippocampal progenitor cells. Biochem Biophys Res Commun. 2018;497(1):424–9.
Article
CAS
PubMed
Google Scholar
Manning BD, Toker A. AKT/PKB Signaling: Navigating the Network. Cell. 2017;169(3):381–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mundi PS, Sachdev J, McCourt C, Kalinsky K. AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol. 2016;82(4):943–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheon DJ, Orsulic S. Mouse models of cancer. Annu Rev Pathol. 2011;6:95–119.
Article
CAS
PubMed
Google Scholar
Singh M, Johnson L. Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clini Cancer Res. 2006;12(18):5312–28.
Article
CAS
Google Scholar
Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005;8(3):179–83.
Article
CAS
PubMed
Google Scholar
Kim TH, Sung SE, Cheal Yoo J, Park JY, Yi GS, Heo JY, Lee JR, Kim NS, Lee DY. Copine1 regulates neural stem cell functions during brain development. Biochem Biophys Res Commun. 2018;495(1):168–73.
Article
CAS
PubMed
Google Scholar
Tang H, Zhu J, Du W, Liu S, Zeng Y, Ding Z, Zhang Y, Wang X, Liu Z, Huang J. CPNE1 is a target of miR-335-5p and plays an important role in the pathogenesis of non-small cell lung cancer. J Exp Clin Cancer Res. 2018;37(1):131.
Article
PubMed
PubMed Central
Google Scholar
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.
Article
PubMed
Google Scholar
Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Poznan, Poland). 2015;19(1a):A68-77.
Google Scholar
Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell. 2002;13(10):3369–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell. 2017;66(6):801–17.
Article
CAS
PubMed
Google Scholar
Gorecki L, Andrs M, Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers. 2021;13:4.
Article
Google Scholar
Brown EJ, Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 2000;14(4):397–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiest J, Clark AM, Dai W. Intron/exon organization and polymorphisms of the PLK3/PRK gene in human lung carcinoma cell lines. Genes Chromosom Cancer. 2001;32(4):384–9.
Article
CAS
PubMed
Google Scholar
Huang L, Huang L, Li Z, Wei Q. Molecular Mechanisms and Therapeutic Potential of miR-493 in Cancer. Crit Rev Eukaryot Gene Expr. 2019;29(6):521–8.
Article
PubMed
Google Scholar
Zhou S, Cui Y, Yu D, Liang J, Zhang M, Ye W. MicroRNA-381 enhances radiosensitivity in esophageal squamous cell carcinoma by targeting X-linked inhibitor of apoptosis protein. Onco Targets Ther. 2017;10:2527–38.
Article
PubMed
PubMed Central
Google Scholar
Wen Q, Zhou C, Xiong W, Su J, He J, Zhang S, Du X, Liu S, Wang J, Ma L. MiR-381–3p regulates the antigen-presenting capability of dendritic cells and represses antituberculosis cellular immune responses by targeting CD1c. J Immunol. 2016;197(2):580–9.
Article
CAS
PubMed
Google Scholar
Yang X, Ruan H, Hu X, Cao A, Song L. miR-381-3p suppresses the proliferation of oral squamous cell carcinoma cells by directly targeting FGFR2. Am J Cancer Res. 2017;7(4):913–22.
PubMed
PubMed Central
Google Scholar
Chan Y, Yu Y, Wang G, Wang C, Zhang D, Wang X, Wang Z, Jian W, Zhang C. Inhibition of MicroRNA-381 Promotes Tumor Cell Growth and Chemoresistance in Clear-Cell Renal Cell Carcinoma. Med Sci Monit. 2019;25:5181–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao G, Li J, Wang J, Wang Z, Bian W. miR-381 functions as a tumor suppressor by targeting ETS1 in pancreatic cancer. Int J Mol Med. 2019;44(2):593–607.
CAS
PubMed
PubMed Central
Google Scholar
Liang HQ, Wang RJ, Diao CF, Li JW, Su JL, Zhang S. The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop. Oncotarget. 2015;6(30):29413–27.
Article
PubMed
PubMed Central
Google Scholar
Xia B, Li H, Yang S, Liu T, Lou G. MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression. Tumour Biol. 2016;37(7):9157–67.
Article
CAS
PubMed
Google Scholar
Tian C, Li J, Ren L, Peng R, Chen B, Lin Y. MicroRNA-381 serves as a prognostic factor and inhibits migration and invasion in non-small cell lung cancer by targeting LRH-1. Oncol Rep. 2017;38(5):3071–7.
Article
CAS
PubMed
Google Scholar
Kent LN, Bae S, Tsai SY, Tang X, Srivastava A, Koivisto C, Martin CK, Ridolfi E, Miller GC, Zorko SM, et al. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J Clin Investig. 2017;127(3):830–42.
Article
PubMed
PubMed Central
Google Scholar