Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.
Article
PubMed
Google Scholar
UK CR. Cancer statistics. http://www.cancerresearchuk.org/cancer-info/cancerstats/.
Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sorensen HT. Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol. 2010;184(1):162–7.
Article
PubMed
Google Scholar
Brown MC, Turner CE. Paxillin: adapting to change. Physiol Rev. 2004;84(4):1315–39.
Article
CAS
PubMed
Google Scholar
Price LSLJ, Schwartz MA, Bokoch GM. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol Biol Cell. 1998;9(7):1863–71.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hoffman GR, Cerione RA. Signaling to the Rho GTPases: networking with the DH domain. FEBS Lett. 2002;513(1):85–91.
Article
CAS
PubMed
Google Scholar
Rodina A, Schramm K, Musatkina E, Kreuser ED, Tavitian A, Tatosyan A. Phosphorylation of p125FAK and paxillin focal adhesion proteins in src-transformed cells with different metastatic capacity. FEBS Lett. 1999;455(1–2):145–8.
Article
CAS
PubMed
Google Scholar
Sattler M, Pisick E, Morrison PT, Salgia R. Role of the cytoskeletal protein paxillin in oncogenesis. Crit Rev Oncog. 2000;11(1):63–76.
Article
CAS
PubMed
Google Scholar
Parr C, Davies G, Nakamura T, Matsumoto K, Mason MD, Jiang WG. The HGF/SF-induced phosphorylation of paxillin, matrix adhesion, and invasion of prostate cancer cells were suppressed by NK4, an HGF/SF variant. Biochem Biophys Res Commun. 2001;285(5):1330–7.
Article
CAS
PubMed
Google Scholar
Gmyrek GAWM, Webb CP, Yu HM, You X, Vaughan ED, Vonde Wade GF, et al. Normal and malignant prostate epithelial cells differ in their response to hepatocyte growth factor/scatter factor. Am J Pathol. 2001;159:579–90.
Article
CAS
PubMed Central
PubMed
Google Scholar
Maha Hashem TE. Hepatocyte Growth Factor as a Tumor Marker in the Serum of Patients with Prostate Cancer. J Egypt Natl Canc Inst. 2005;17(2):114–20.
PubMed
Google Scholar
Humphrey PAHS, Picus J, Sanford B, Vogelzang NJ, Small EJ, Kantoff PW. Prognostic significance of plasma scatter factor/hepatocyte growth factor levels in patients with metastatic hormone–refractory prostate cancer: results from cancer and leukemia group B 150005/9480. Clin Genitourin Cancer. 2006;4(4):269–74.
Article
CAS
PubMed
Google Scholar
Kang H, Wang J, Longley SJ, Tang JX, Shaw SK. Relative actin nucleation promotion efficiency by WASP and WAVE proteins in endothelial cells. Biochem Biophys Res Commun. 2010;400(4):661–6.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sossey-Alaoui K, Su G, Malaj E, Roe B, Cowell JK. WAVE3, an actin-polymerization gene, is truncated and inactivated as a result of a constitutional t(1;13) (q21;q12) chromosome translocation in a patient with ganglioneuroblastoma. Oncogene. 2002;21:5967–74.
Article
CAS
PubMed
Google Scholar
Sossey-Alaoui K, Ranalli TA, Li X, Bakin AV, Cowell JK. WAVE3 promotes cell motility and invasion through the regulation of MMP-1, MMP-3, and MMP-9 expression. Exp Cell Res. 2005;308:135–45.
Article
CAS
PubMed
Google Scholar
Sossey-Alaoui K, Safina A, Li X, Vaughan MM, Hicks DG, Bakin AV, et al. Down-regulation of WAVE3, a metastasis promoter gene, inhibits invasion and metastasis of breast cancer cells. Am J Pathol. 2007;170:2112–21.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fernando HS SA, Kynaston HG, Jiang WG. WAVE3 is associated with invasiveness in prostate cancer cells. Urol Oncol. 2009, Epub ahead of print.
Fujiuchi YNO, Murakami K, Fuse H, Saiki I. Effect of hepatocyte growth factor on invasion of prostate cancer cell lines. Oncol Rep. 2003;10(4):1001–6.
CAS
PubMed
Google Scholar
Fernando HS, Sanders AJ, Kynaston HG, Jiang WG. WAVE3 is associated with invasiveness in prostate cancer cells. Urol Oncol. 2010;28(3):320–7.
Article
CAS
PubMed
Google Scholar
Ye L, Sun PH, Martin TA, Sanders AJ, Mason MD, Jiang WG. Psoriasin (S100A7) is a positive regulator of survival and invasion of prostate cancer cells. Urol Oncol. 2013;31(8):1576–83.
Article
CAS
PubMed
Google Scholar
Jiang WG, Davies G, Martin TA, Parr C, Watkins G, Mason MD, et al. Targeting matrilysin and its impact on tumor growth in vivo: the potential implications in breast cancer therapy. Clin Cancer Res. 2005;11(16):6012–9.
Article
CAS
PubMed
Google Scholar
Jiang WG, Hiscox S, Hallett MB, Scott C, Horrobin DF, Puntis MC. Inhibition of hepatocyte growth factor-induced motility and in vitro invasion of human colon cancer cells by gamma-linolenic acid. Br J Cancer. 1995;71(4):744–52.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jiang WG, Grimshaw D, Lane J, Martin TA, Abounader R, Laterra J, et al. A hammerhead ribozyme suppresses expression of hepatocyte growth factor/scatter factor receptor c-MET and reduces migration and invasiveness of breast cancer cells. Clin Cancer Res. 2001;7(8):2555–62.
CAS
PubMed
Google Scholar
Pixley FJLP, Condeelis JS, Stanley ER. Protein tyrosine phosphatase phi regulates paxillin tyrosine phosphorylation and mediates colony-stimulating factor 1-induced morphological changes in macrophages. Mol Cell Biol. 2001;21(5):1795–809.
Article
CAS
PubMed Central
PubMed
Google Scholar
Azuma KTM, Uekita T, Inoue S, Yokota J, Ouchi Y, Sakai R. Tyrosine phosphorylation of paxillin affects the metastatic potential of human osteosarcoma. Oncogene. 2005;24(30):4754–64.
Article
CAS
PubMed
Google Scholar
Anna Rodina KS, Musatkina E, Kreuser E-D, Tavitian A, Tatosyan A. Phosphorylation of p125FAK and paxillin focal adhesion proteins in src-transformed cells with different metastatic capacity. FEBS Lett. 1999;455(1):145–8.
Article
Google Scholar
Burridge KTC, Romer LH. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol. 1992;119(4):893–903.
Article
CAS
PubMed
Google Scholar
Chakraborti SMM, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem. 2003;253:269–85.
Article
CAS
PubMed
Google Scholar
Coussens LMWZ. Matrix metalloproteinases and the development of cancer. Chem Biol. 1996;3:895–904.
Article
CAS
PubMed
Google Scholar
Zhang LSJ, Feng J, Klocker H, Lee C, Zhang J. Type IV collagenase (matrix metalloproteinase-2 and −9) in prostate cancer. Prostate Cancer Prostatic Dis. 2004;7(4):327–32.
Article
PubMed
Google Scholar
Reunanen NLS, Ahonen M, Foschi M, Han J, Kähäri VM. Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem. 2002;277(35):32360–8.
Article
CAS
PubMed
Google Scholar
Sasaki MKM, Ito T, Watanabe A, Izumiyama N, Sano M, Kagaya M, et al. Differential regulation of metalloproteinase production, proliferation and chemotaxis of human lung fibroblasts by PDGF, interleukin-1beta and TNF-alpha. Mediators Inflamm. 2000;9(3–4):155–60.
Article
CAS
PubMed Central
PubMed
Google Scholar
Suetsugu SYD, Kurisu S, Takenawa T. Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell. 2003;5(4):595–609.
Article
CAS
PubMed
Google Scholar
Friedl PWK. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3(5):362–74.
Article
CAS
PubMed
Google Scholar
Bishop ALHA. Rho GTPases and their effector proteins. Biochem J. 2000;1(348 Pt 2):241–55.
Article
Google Scholar
Schlaepfer DDHC, Sieg DJ. Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 1999;71(3–4):435–78.
Article
CAS
PubMed
Google Scholar
Hauck CRHD, Puente XS, Cheresh DA, Schlaepfer DD. FRNK blocks v-Src-stimulated invasion and experimental metastases without effects on cell motility or growth. EMBO J. 2002;21(23):6289–302.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sein TTTA, Hiraiwa Y, Amin AR, Sohara Y, Liu Y, Matsuda S, et al. A role for FAK in the Concanavalin A-dependent secretion of matrix metalloproteinase-2 and −9. Oncogene. 2000;19(48):5539–42.
Article
CAS
PubMed
Google Scholar
Zhuge Y, Xu J. Rac1 mediates type I collagen-dependent MMP-2 activation. role in cell invasion across collagen barrier. J Biol Chem. 2001;276(19):16248–56.
Article
CAS
PubMed
Google Scholar
Harris Jr ED, Reynolds JJ, Werb Z. Cytochalasin B increases collagenase production by cells in vitro. Nature. 1975;18(257):243–4.
Article
Google Scholar
Tomasek JJHN, Updike DL, Ahern-Moore JS, Vu TK, Liu RW, Howard EW. Gelatinase A activation is regulated by the organization of the polymerized actin cytoskeleton. J Biol Chem. 1997;14(272):7482–7.
Article
Google Scholar