Skip to main content

Targeting deubiquitinating enzymes in cancer stem cells


Cancer stem cells (CSCs) are rare but accounted for tumor initiation, progression, metastasis, relapse and therapeutic resistance. Ubiquitination and deubiquitination of stemness-related proteins are essential for CSC maintenance and differentiation, even leading to execute various stem cell fate choices. Deubiquitinating enzymes (DUBs), specifically disassembling ubiquitin chains, are important to maintain the balance between ubiquitination and deubiquitination. In this review, we have focused on the DUBs regulation of stem cell fate determination. For example, we discuss deubiquitinase inhibition may lead stem cell transcription factors and CSCs-related protein degradation. Also, CSCs microenvironment is regulated by DUBs activity. Our review provides a new insight into DUBs activity by emphasizing their cellular role in regulating stem cell fate and illustrates the opportunities for the application of DUBs inhibitors in the CSC-targeted therapy.


The existence of cancer stem cells (CSCs) are considered to play a pivotal role in tumor recurrence, resistance and progression [1, 2]. There are three main aspects to effect CSCs maintenance and differentiation, including transcription factor network, CSC-related proteins and microenvironment [3, 4]. Conventional cancer therapy can’t kill cancer stem cells, which will cause cancer relapse and drug resistance under certain conditions (Fig. 1).

Fig. 1

CSCs cause cancer relapse and resistance after conventional cancer therapy. The conventional therapy targeting the tumor bulk without targeting the CSCs leads to tumor recurrence

Ubiquitination is a post-translational modification process that participates in the covalent conjugation of small, highly conserved 76 amino acid protein ubiquitin with the lysine residues of the substrate protein through the cascade of enzyme reactions, including E1-activating enzymes, E2-conjugating enzymes, and E3 ligases, resulting in protein final degradation, relocalization or activity change. On the contrary, DUB-mediated deubiquitination removes the ubiquitin labels to protect substrate proteins from above-mentioned changes caused by ubiquitination. It has been reported that the ubiquitination and deubiquitination of the key proteins in stem cells may determine the fate of cells (Fig. 2). Recently, DUBs have been demonstrated as promising targets for cancer therapy [57], their functions in cancer cell stemness remains elusive. For example, USP54 is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis [8]. USP28 confers stem-cell-like traits to breast cancer cells [9].

Fig. 2

Regulating CSCs differentiation and pluripotency by ubiquitination and deubiquitination. Ubiquitination of core stem cell transcription factors or related key proteins by E3 ligases may drive CSCs differentiation, but deubiquitination of those proteins by DUBs mediates stem pluripotency

Finding deubiquitinates of transcription factors and key protein can provide better understand of the activation mechanism on CSCs, and further deubiquitination inhibitors can be used to eliminate CSCs in cancer radical treatment.

DUBs and CSC-associated transcription factors

Embryonic stem cells (ESCs) self-renewal and differentiation are known to be regulated by a network of transcription factors including Oct3/4, Sox2, c-Myc, Klf4 and Nanog [10, 11]. Cancer stem cells share significant similarity with normal stem cells in biological characteristics such as quiescence, self-renewal and differentiation [12, 13].


Sox2 also regulates the differentiation and stemness in cancer stem cells [14]. USP22 is located directly on the Sox2 promoter and negatively regulates Sox2 transcription in ESCs [15]. In brain tumor cells, Usp9x was associated with Sox2 and played key roles in the growth of tumor cells, but the relationship between them was not clear [16]. Sox2 also regulated DUBs activity by binding to the promoter region at the transcriptional level, such as USP7, USP25, USP37, and USP44 [17].


c-Myc is a classical CSC-related marker, which can be stabilized by many DUBs. USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer [18]. USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells [19]. In a subset of human breast and lung cancers, USP36 interacts with and deubiquitinates c-Myc [20]. USP28 is required for c-Myc stability in human tumor cells, which binds to c-Myc through an interaction with FBW7alpha, an F-box protein that is part of an SCF-type ubiquitin ligase [21].

Nanog and ID proteins

Recent studies demonstrated that USP21 maintained the stemness of mouse embryonic stem cells via stabilization of Nanog by removing K48-linked ubiquitin chains [22]. Inhibitor of DNA binding (ID) proteins are transcriptional regulators that control the timing of cell fate determination and differentiation in stem and progenitor cells during normal development and adult life [23]. The small molecule inhibitor of USP1 promotes ID1 degradation and has cytotoxicity to leukemic cells [24]. USP1 deubiquitinated and stabilized ID1, ID2, and ID3 proteins to preserve a mesenchymal stem cell program in osteosarcoma [25].

Some pluripotent factors such as Oct3/4, Klf4 and Lin28 have not been found their DUBs, but all of them are affected by the 26S proteasome, suggesting a potential role of DUB for their stabilization in CSCs.

DUBs and CSC-related proteins

Some CSC-related proteins also control the fate of CSC, such as SIRT1, P53, PTEN, LSD1, PRC and so on. SIRT1, a NAD+-dependent histone deacetylase, influences stem cell aging by controlling mitochondrial biogenesis and turnover which may be required for self-renewal [26, 27].


SIRT1 inhibition represents a potential approach to target leukemia stem cells [28, 29]. USP22 interacts with and stabilizes SIRT1 by removing polyubiquitin chains conjugated onto SIRT1 in mouse embryonic development [30].


P53, tumor suppresser, demonstrates a role for p53 deficiency in enhancing the formation of tumors arising from stem cells (embryonal carcinoma cells) [31, 32]. It is reported that USP10 deubiquitinates p53, reversing Mdm2-induced p53 nuclear export and degradation [33]. Ataxin-3, the machado–joseph disease deubiquitinase, interacts with p53 and functions as a novel p53 DUB [34]. USP7 deubiquitinates both p53 and MDM2, one of the ubiquitin ligases that ubiquitylates p53, thereby stabilizing both proteins [35, 36]. OTUD1, OTUD5 and USP11 directly deubiquitinating p53 and functional proteins were required for p53 stabilization [3739].


PTEN loss leads to the development of cancer stem cells, with the capacity of self-renewal and multi-lineage differentiation [4043]. ATXN3 acts primarily by repressing PTEN transcription, without altering PTEN protein stability [44]. However, USP18 overexpression could stabilize PTEN protein, and USP18 repression decreases mainly cytoplasmic PTEN [45]. PTEN subcellular compartmentalization can be regulated by USP7 [46, 47].


The dysfunction of polycomb repressive complex (PRC) is closely related to cancer stemness [48, 49]. PRC1 represses transcription is only in part dependent on its ubiquitination activity, and Fbxl10 is reported to recruit PRC1 to CpG islands and regulate H2A ubiquitylation [50, 51]. Polycomb gene silencing may require H2A ubiquitination by PRC1 and H2A deubiquitination by Polycomb repressive deubiquitinase (PR-DUB). In some cancer types, PRC1 can be deubiquitinated by USP7, USP11 and USP26 [52, 53]. PRC2-mediated histone methylation plays an important role in aberrant cancer gene silencing and is a potential target for cancer therapy. The PRC2 proteins EZH2 is frequently overexpressed in mesothelioma with BAP1 mutation [54]. The deubiquitination enzymes of PRC need to be further explored in the future.


Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, maintains cell stemness during cancer progression [55, 56]. USP7 and USP28 inhibited LSD1 ubiquitination and stabilized LSD1 protein level [9, 57].

Taken together, CSC-related proteins degradation or activity inhibition by targeting DUBs is effective for eliminating cancer stem cells.

DUBs and CSC microenvironment

The microenvironment of CSC has also been reported to play essential roles in maintenance of cancer stemness. Tumor specific microenvironments comprise stromal cells, immune cells, networks of cytokines and growth factors, hypoxic regions, and the extracellular matrix (ECM). We summarize the role of CSC microenvironment from two aspects: hypoxia and inflammation [5860].


Hypoxia is considered to be a major feature of the tumor microenvironment and is a potential contributor to the CSC phenotype. Hypoxia-inducible factor (HIF) transcription factors (HIF-1α and HIF-2α) are key mediators in cancer hypoxia response and help maintain multiple CSC population [61, 62]. In the presence of oxygen, VHL tumor suppressor protein interacts with HIF proteins and this interaction results in the ubiquitination and degradation of HIF proteins, maintaining low levels of these transcription factors [63]. However, HIF proteins stabilization can be regulated by DUBs, such as USP8, USP19 and USP28 [6466]. In addition, USP52 is a key component of P-bodies required to prevent HIF1α mRNA degradation [67].


The inflammatory cytokines modify the cancer microenvironment, CSCs secretion factors attract the necessary cells into their areas, enabling them better survive and escape chemotherapy [68]. Transforming growth factor β (TGFβ) has the ability to regulate immune cell populations in inhibiting and promoting tumor formation and progression active [69]. Cancer cells exposed to IL-6 are malignant, such as enhanced invasive ability and drug resistance [70, 71]. IL-8 promotes angiogenic activity through the activation of VEGFR2 [78]. USP21 binds to the promoter region of IL-8 and mediates transcriptional initiation in stem-cell like property of human renal cell carcinoma [79]. Also, IL-6 and G-CSF levels have been elevated in lung CSCs [80]. Most inflammatory cytokines are produced by many kinds of signal pathways and the deubiquitination of key proteins in the pathway can block inflammatory cytokines release. For example, TRAF6, a key regulator in toll-like receptor pathway and NF-κB pathway, can be regulated by USP4 and A20 [81, 82].


CSCs are difficult to eliminate by conventional treatment, mainly due to disorders of signal transduction and epigenetics. The control of ubiquitination and deubiquitination of CSC-related proteins determine the difference in CSCs and the maintenance of pluripotency. DUBs can protect the stemness of the CSC, thereby maintaining its activity and further forming a vicious circle. Therefore, DUBs are very important in the CSC specific treatment. We summarized the effect of deubiquitinating enzymes in the regulation of target proteins in Table 1. The successful inhibition of CSC maintenance and radiation resistance by USP1 specific inhibitor (pimozide) has been provided the basis for further clinical trials [83]. It means that DUB inhibitors may boost more advantages in CSC-specific therapy than other anti-cancer drugs such as proteasome inhibitors. For example, b-AP15, a selective DUB inhibitor, can overcome bortezomib resistance in multiple myeloma [84]. More relevant basic research should be carried out to determine the DUBs related to the CSCs and to identify the mechanisms between them. Currently commercialized DUB inhibitors are summarized in Table 2, showing significant pharmacological effects on cancer cells or cancer stem cells. In general, strategies involving the use of DUB inhibitors to target combination therapy of cancer stem cells and differentiated cancer cells can provide better outcomes for radical cancer treatment.

Table 1 The effect of deubiquitinating enzymes in the regulation of target proteins
Table 2 DUB inhibitors for preclinical application in CSC-targeted therapy



cancer stem cells


deubiquitinating enzymes


embryonic stem cells


inhibitor of DNA binding


polycomb repressive complex


lysine-specific demethylase 1


extracellular matrix


hypoxia-inducible factor


transforming growth factor β


  1. 1.

    Krause M, Dubrovska A, Linge A, Baumann M. Cancer stem cells: radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev. 2017;109:63–73.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Qiu GZ, Sun W, Jin MZ, Lin J, Lu PG, Jin WL. The bad seed gardener: deubiquitinases in the cancer stem–cell signaling network and therapeutic resistance. Pharmacol Ther. 2017;172:127–38.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Suresh B, Lee J, Kim KS, Ramakrishna S. The importance of ubiquitination and deubiquitination in cellular reprogramming. Stem Cells Int. 2016;2016:6705927.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Fraile JM, Manchado E, Lujambio A, Quesada V, Campos-Iglesias D, Webb TR, Lowe SW, Lopez-Otin C, Freije JM. USP39 deubiquitinase is essential for KRAS oncogene-driven cancer. J Biol Chem. 2017;292(10):4164–75.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Zhao C, Chen X, Zang D, Lan X, Liao S, Yang C, Zhang P, Wu J, Li X, Liu N, et al. A novel nickel complex works as a proteasomal deubiquitinase inhibitor for cancer therapy. Oncogene. 2016;35(45):5916–27.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Suresh B, Lee J, Kim H, Ramakrishna S. Regulation of pluripotency and differentiation by deubiquitinating enzymes. Cell Death Differ. 2016;23(8):1257–64.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Fraile JM, Campos-Iglesias D, Rodriguez F, Espanol Y, Freije JM. The deubiquitinase USP54 is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis. Oncotarget. 2016;7(46):74427–34.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wu Y, Wang Y, Yang XH, Kang T, Zhao Y, Wang C, Evers BM, Zhou BP. The deubiquitinase USP28 stabilizes LSD1 and confers stem-cell-like traits to breast cancer cells. Cell Rep. 2013;5(1):224–36.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Cai N, Li M, Qu J, Liu GH, Izpisua Belmonte JC. Post-translational modulation of pluripotency. J Mol Cell Biol. 2012;4(4):262–5.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Ramakrishna S, Kim KS, Baek KH. Posttranslational modifications of defined embryonic reprogramming transcription factors. Cell Reprogr. 2014;16(2):108–20.

    CAS  Article  Google Scholar 

  12. 12.

    Zhao J. Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther. 2016;160:145–58.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bharti R, Dey G, Mandal M. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: a snapshot of IL-6 mediated involvement. Cancer Lett. 2016;375(1):51–61.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Liu K, Lin B, Zhao M, Yang X, Chen M, Gao A, Liu F, Que J, Lan X. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Sign. 2013;25(5):1264–71.

    CAS  Article  Google Scholar 

  15. 15.

    Sussman RT, Stanek TJ, Esteso P, Gearhart JD, Knudsen KE, McMahon SB. The epigenetic modifier ubiquitin-specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of sex-determining region Y-box 2 (SOX2). J Biol Chem. 2013;288(33):24234–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cox JL, Wilder PJ, Gilmore JM, Wuebben EL, Washburn MP, Rizzino A. The SOX2-interactome in brain cancer cells identifies the requirement of MSI2 and USP9X for the growth of brain tumor cells. PLoS ONE. 2013;8(5):e62857.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Pan J, Deng Q, Jiang C, Wang X, Niu T, Li H, Chen T, Jin J, Pan W, Cai X, et al. USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer. Oncogene. 2015;34(30):3957–67.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kim D, Hong A, Park HI, Shin WH, Yoo L, Jeon SJ, Chung KC. Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. J Cell Physiol. 2017;232(12):3664–76.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Sun XX, He X, Yin L, Komada M, Sears RC, Dai MS. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proc Natl Acad Sci USA. 2015;112(12):3734–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ, Eilers M. The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol. 2007;9(7):765–74.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Jin J, Liu J, Chen C, Liu Z, Jiang C, Chu H, Pan W, Wang X, Zhang L, Li B, et al. The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat Commun. 2016;7:13594.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer. 2014;14(2):77–91.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Mistry H, Hsieh G, Buhrlage SJ, Huang M, Park E, Cuny GD, Galinsky I, Stone RM, Gray NS, D’Andrea AD, et al. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther. 2013;12(12):2651–62.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, Cao TC, Carano RA, Dixit VM. USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell. 2011;146(6):918–30.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Mantel C, Broxmeyer HE. Sirtuin 1, stem cells, aging, and stem cell aging. Curr Opin Hematol. 2008;15(4):326–31.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Zhou L, Chen X, Liu T, Zhu C, Si M, Jargstorf J, Li M, Pan G, Gong Y, Luo ZP et al. SIRT1-dependent anti-senescence effects of cell-deposited matrix on human umbilical cord mesenchymal stem cells. J Tissue Eng Regen Med. 2017. doi:10.1002/term.2422.

    Google Scholar 

  28. 28.

    Li L, Osdal T, Ho Y, Chun S, McDonald T, Agarwal P, Lin A, Chu S, Qi J, Li L, et al. SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells. Cell Stem Cell. 2014;15(4):431–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Jin Y, Cao Q, Chen C, Du X, Jin B, Pan J. Tenovin-6-mediated inhibition of SIRT1/2 induces apoptosis in acute lymphoblastic leukemia (ALL) cells and eliminates ALL stem/progenitor cells. BMC Cancer. 2015;15:226.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lin Z, Yang H, Kong Q, Li J, Lee SM, Gao B, Dong H, Wei J, Song J, Zhang DD, et al. USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell. 2012;46(4):484–94.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Puzio-Kuter AM, Levine AJ. Stem cell biology meets p53. Nat Biotechnol. 2009;27(10):914–5.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Aloni-Grinstein R, Shetzer Y, Kaufman T, Rotter V. p53: the barrier to cancer stem cell formation. FEBS Lett. 2014;588(16):2580–9.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell. 2010;140(3):384–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Liu H, Li X, Ning G, Zhu S, Ma X, Liu X, Liu C, Huang M, Schmitt I, Wullner U, et al. The Machado-Joseph disease deubiquitinase Ataxin-3 regulates the stability and apoptotic function of p53. PLoS Biol. 2016;14(11):e2000733.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Brooks CL, Li M, Hu M, Shi Y, Gu W. The p53–Mdm2–HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene. 2007;26(51):7262–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Brooks CL, Gu W. p53 regulation by ubiquitin. FEBS Lett. 2011;585(18):2803–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Piao S, Pei HZ, Huang B, Baek SH. Ovarian tumor domain-containing protein 1 deubiquitinates and stabilizes p53. Cell Sign. 2017;33:22–9.

    CAS  Article  Google Scholar 

  38. 38.

    Luo J, Lu Z, Lu X, Chen L, Cao J, Zhang S, Ling Y, Zhou X. OTUD5 regulates p53 stability by deubiquitinating p53. PLoS ONE. 2013;8(10):e77682.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Ke JY, Dai CJ, Wu WL, Gao JH, Xia AJ, Liu GP, Lv KS, Wu CL. USP11 regulates p53 stability by deubiquitinating p53. J Zhejiang Univ Sci B. 2014;15(12):1032–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Schubbert S, Jiao J, Ruscetti M, Nakashima J, Wu S, Lei H, Xu Q, Yi W, Zhu H, Wu H. Methods for PTEN in stem cells and cancer stem cells. Methods Mol Biol. 2016;1388:233–85.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, Wu J, Xu X, Fu L, Li Y, et al. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun. 2015;6:10068.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Liao J, Marumoto T, Yamaguchi S, Okano S, Takeda N, Sakamoto C, Kawano H, Nii T, Miyamato S, Nagai Y, et al. Inhibition of PTEN tumor suppressor promotes the generation of induced pluripotent stem cells. Mol Ther. 2013;21(6):1242–50.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hill R, Wu H. PTEN, stem cells, and cancer stem cells. J Biol Chem. 2009;284(18):11755–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Sacco JJ, Yau TY, Darling S, Patel V, Liu H, Urbe S, Clague MJ, Coulson JM. The deubiquitylase Ataxin-3 restricts PTEN transcription in lung cancer cells. Oncogene. 2014;33(33):4265–72.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Mustachio LM, Kawakami M, Lu Y, Rodriguez-Canales J, Mino B, Behrens C, Wistuba I, Bota-Rabassedas N, Yu J, Lee JJ, et al. The ISG15-specific protease USP18 regulates stability of PTEN. Oncotarget. 2017;8(1):3–14.

    PubMed  Google Scholar 

  46. 46.

    Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature. 2008;455(7214):813–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Morotti A, Panuzzo C, Crivellaro S, Pergolizzi B, Familiari U, Berger AH, Saglio G, Pandolfi PP. BCR-ABL disrupts PTEN nuclear-cytoplasmic shuttling through phosphorylation-dependent activation of HAUSP. Leukemia. 2014;28(6):1326–33.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Gao X, Jin W. The emerging role of tumor-suppressive microRNA-218 in targeting glioblastoma stemness. Cancer Lett. 2014;353(1):25–31.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Suva ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC, Baumer K, Le Bitoux MA, Marino D, Cironi L, et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 2009;69(24):9211–8.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Laugesen A, Hojfeldt JW, Helin K. Role of the polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harb Perspect Med. 2016;6(9):a026575.

    Article  PubMed  Google Scholar 

  51. 51.

    Wu X, Johansen JV, Helin K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell. 2013;49(6):1134–46.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Maertens GN, El Messaoudi-Aubert S, Elderkin S, Hiom K, Peters G. Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. EMBO J. 2010;29(15):2553–65.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Lecona E, Narendra V, Reinberg D. USP7 cooperates with SCML2 to regulate the activity of PRC1. Mol Cell Biol. 2015;35(7):1157–68.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kemp CD, Rao M, Xi S, Inchauste S, Mani H, Fetsch P, Filie A, Zhang M, Hong JA, Walker RL, et al. Polycomb repressor complex-2 is a novel target for mesothelioma therapy. Clin Cancer Res. 2012;18(1):77–90.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Amente S, Lania L, Majello B. The histone LSD1 demethylase in stemness and cancer transcription programs. Biochim Biophys Acta. 2013;1829(10):981–6.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Hino S, Kohrogi K, Nakao M. Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells. Cancer Sci. 2016;107(9):1187–92.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Yi L, Cui Y, Xu Q, Jiang Y. Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol Rep. 2016;36(5):2935–45.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Carnero A, Lleonart M. The hypoxic microenvironment: a determinant of cancer stem cell evolution. BioEssays. 2016;38(Suppl 1):S65–74.

    Article  PubMed  Google Scholar 

  59. 59.

    Kise K, Kinugasa-Katayama Y, Takakura N. Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev. 2016;99(Pt B):197–205.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Lau EY, Ho NP, Lee TK. Cancer stem cells and their microenvironment: biology and therapeutic implications. Stem Cells Int. 2017;2017:3714190.

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    van den Beucken T, Koch E, Chu K, Rupaimoole R, Prickaerts P, Adriaens M, Voncken JW, Harris AL, Buffa FM, Haider S, et al. Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun. 2014;5:5203.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Zhao M, Zhang Y, Zhang H, Wang S, Zhang M, Chen X, Wang H, Zeng G, Chen X, Liu G, et al. Hypoxia-induced cell stemness leads to drug resistance and poor prognosis in lung adenocarcinoma. Lung Cancer. 2015;87(2):98–106.

    Article  PubMed  Google Scholar 

  63. 63.

    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Flugel D, Gorlach A, Kietzmann T. GSK-3beta regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1alpha. Blood. 2012;119(5):1292–301.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Altun M, Zhao B, Velasco K, Liu H, Hassink G, Paschke J, Pereira T, Lindsten K. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1alpha (HIF-1alpha) during hypoxia. J Biol Chem. 2012;287(3):1962–9.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Troilo A, Alexander I, Muehl S, Jaramillo D, Knobeloch KP, Krek W. HIF1alpha deubiquitination by USP8 is essential for ciliogenesis in normoxia. EMBO Rep. 2014;15(1):77–85.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Bett JS, Ibrahim AF, Garg AK, Kelly V, Pedrioli P, Rocha S, Hay RT. The P-body component USP52/PAN2 is a novel regulator of HIF1A mRNA stability. Biochem J. 2013;451(2):185–94.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Shigdar S, Li Y, Bhattacharya S, O’Connor M, Pu C, Lin J, Wang T, Xiang D, Kong L, Wei MQ, et al. Inflammation and cancer stem cells. Cancer Lett. 2014;345(2):271–8.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 2010;21(1):49–59.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Dethlefsen C, Hojfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat. 2013;138(3):657–64.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Hollier BG, Evans K, Mani SA. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia. 2009;14(1):29–43.

    Article  PubMed  Google Scholar 

  72. 72.

    Shen G, Lin Y, Yang X, Zhang J, Xu Z, Jia H. MicroRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting USP9X. BMC Cancer. 2014;14:393.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Fu P, Du F, Liu Y, Yao M, Zhang S, Zheng X, Zheng S. WP1130 increases cisplatin sensitivity through inhibition of usp9x in estrogen receptor-negative breast cancer cells. Am J Transl Res. 2017;9(4):1783–91.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Zhu Y, Zhang Y, Sui Z, Zhang Y, Liu M, Tang H. USP14 de-ubiquitinates vimentin and miR-320a modulates USP14 and vimentin to contribute to malignancy in gastric cancer cells. Oncotarget. 2016;8(30):48725-36.

    PubMed Central  Google Scholar 

  75. 75.

    Wang X, Mazurkiewicz M, Hillert EK, Olofsson MH, Pierrou S, Hillertz P, Gullbo J, Selvaraju K, Paulus A, Akhtar S, et al. Corrigendum: the proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci Rep. 2016;6:30667.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Song HM, Lee JE, Kim JH. Ubiquitin C-terminal hydrolase-L3 regulates EMT process and cancer metastasis in prostate cell lines. Biochem Biophys Res Commun. 2014;452(3):722–7.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Ning B, Zhao W, Qian C, Liu P, Li Q, Li W, Wang RF. USP26 functions as a negative regulator of cellular reprogramming by stabilising PRC1 complex components. Nat Commun. 2017;8(1):349.

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Martin D, Galisteo R, Gutkind JS. CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem. 2009;284(10):6038–42.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Peng L, Hu Y, Chen D, Jiao S, Sun S. Ubiquitin specific peptidase 21 regulates interleukin-8 expression, stem-cell like property of human renal cell carcinoma. Oncotarget. 2016;7(27):42007–16.

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One. 2008;3(8):e3077.

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Xiao N, Li H, Luo J, Wang R, Chen H, Chen J, Wang P. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration. Biochem J. 2012;441(3):979–86.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Sun SC. Deubiquitylation and regulation of the immune response. Nat Rev Immunol. 2008;8(7):501–11.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Lee JK, Chang N, Yoon Y, Yang H, Cho H, Kim E, Shin Y, Kang W, Oh YT, Mun GI, et al. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro-oncology. 2016;18(1):37–47.

    Article  PubMed  Google Scholar 

  84. 84.

    Tian Z, D’Arcy P, Wang X, Ray A, Tai YT, Hu Y, Carrasco RD, Richardson P, Linder S, Chauhan D, et al. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood. 2014;123(5):706–16.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Huang Z, Wu Q, Guryanova OA, Cheng L, Shou W, Rich JN, Bao S. Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nat Cell Biol. 2011;13(2):142–52.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R, McDermott JL, Leach CA, Fulcinniti M, Kodrasov MP, et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 2012;22(3):345–58.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Fan YH, Cheng J, Vasudevan SA, Dou J, Zhang H, Patel RH, Ma IT, Rojas Y, Zhao Y, Yu Y, et al. USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis. Cell Death Dis. 2013;4:e867.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Authors’ contributions

HL collected materials and wrote the review. HZS collected materials. YLW modified and corrected the review. All authors read and approved the final manuscript.


Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Not applicable.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.


National Natural Science Foundation of China (81570118; 81700475).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information



Corresponding authors

Correspondence to Hu Lei or Yingli Wu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Shan, H. & Wu, Y. Targeting deubiquitinating enzymes in cancer stem cells. Cancer Cell Int 17, 101 (2017).

Download citation


  • Cancer stem cells
  • Deubiquitinating enzymes
  • Cancer therapies
  • CSCs