Nisar B, Sultan A, Rubab SL. Comparison of medicinally important natural products versus synthetic drugs-a short commentary. Nat Prod Chem Res. 2017;6:1000308.
Google Scholar
Atanasov AG, Zotchev SB, Dirsch VM. International natural product sciences T. Supuran CT natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16.
Article
CAS
Google Scholar
Sharifi-Rad J, Ozleyen A, BoyunegmezTumer T, OluwaseunAdetunji C, ElOmari N, BalahbibA Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC. Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules. 2019;9:679.
Article
CAS
Google Scholar
Yang SP, Dong L, Wang Y, Wu Y, Yue JM. Antifungal diterpenoids of Pseudolarix kaempferi, and their structure–activity relationship study. Bioorg Med Chem. 2003;11:4577–84.
Article
CAS
Google Scholar
He WJ, Chu HB, Zhang YM, Han HJ, Yan H, Zeng GZ, Fu ZH, Olubanke O, Tan NH. Antimicrobial, cytotoxic lignans and terpenoids from the twigs of Pseudolarix kaempferi. Planta Med. 2011;77:1924–31.
Article
CAS
Google Scholar
Zhao XT, Yu MH, Su SY, Shi XL, Lei C, Hou AJ. Cycloartane triterpenoids from Pseudolarix amabilis and their antiviral activity. Phytochemistry. 2020;171:112229.
Article
CAS
Google Scholar
Liu P, Guo H, Wang W, Zhang J, Li N, Han J, Zhou J, Hu Y, Zhang T, Liu Z. Guo D Cytotoxic diterpenoids from the bark of Pseudolarix kaempferi and their structure–activity relationships. J Nat Prod. 2007;70:533–7.
Article
CAS
Google Scholar
Tian X, Yang N, Li B, Zhang J, Xu X, Yue R, Li H, Chen L, Shen Y, Zhang W. Inhibition of HL-60 cell growth via cell cycle arrest and apoptosis induction by a cycloartane-labdane heterodimer from Pseudolarix amabilis. Org Biomol Chem. 2016;14:2618–24.
Article
CAS
Google Scholar
Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 2018;25:46–55.
Article
CAS
Google Scholar
Frenzel A, Grespi F, Chmelewskij W, Villunger A. Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis. 2009;14:584–96.
Article
CAS
Google Scholar
Kelekar A, Thompson CB. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 1998;8:324–30.
Article
CAS
Google Scholar
Liu Z, Wild C, Ding Y, Ye N, Chen H, Wold EA, Zhou J. BH4 domain of Bcl-2 as a novel target for cancer therapy. Drug Discov Today. 2016;21:989–96.
Article
CAS
Google Scholar
Abou Samra A, Robert A, Gov C, Favre L, Eloy L, Jacquet E, Bignon J, Wiels J, Desrat S. Roussi F Dual inhibitors of the pro-survival proteins Bcl-2 and Mcl-1 derived from natural compound meiogynin A. Eur J Med Chem. 2018;148:26–38.
Article
CAS
Google Scholar
Adewole KE, Ishola AA. Phytosterols and triterpenes from Morinda lucida Benth (Rubiaceae) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: an in-silico study. J Recept Signal Transduct Res. 2019;39:87–97.
Article
CAS
Google Scholar
Nance MA, Seethala RR, Wang Y, Chiosea SI, Myers EN, Johnson JT, Lai SY. Treatment and survival outcomes based on histologic grading in patients with head and neck mucoepidermoid carcinoma. Cancer. 2008;113:2082–9.
Article
Google Scholar
Yu G, Peng X. Conservative and functional surgery in the treatment of salivary gland tumours. Int J Oral Sci. 2019;11:22.
Article
CAS
Google Scholar
Janet-Ofelia G-C, Rafael M-V, Guillermo G-A, Carlos-Enrique C-V, José-Martín R-M, Henry G-M, Jaime-Enrique M-G. Mucoepidermoid carcinoma of the salivary glands: survival and prognostic factors. J Maxillofacial Oral Surg. 2017;16:431–7.
Article
Google Scholar
Xiang W, Yang CY, Bai L. MCL-1 inhibition in cancer treatment. Onco Targets Ther. 2018;11:7301–14.
Article
CAS
Google Scholar
Le Gouill S, Podar K, Harousseau JL, Anderson KC. Mcl-1 regulation and its role in multiple myeloma. Cell Cycle. 2004;3:1259–62.
Article
Google Scholar
Zhou T, Li G, Cao B, Liu L, Cheng Q, Kong H, Shan C, Huang X, Chen J, Gao N. Downregulation of Mcl-1 through inhibition of translation contributes to benzyl isothiocyanate-induced cell cycle arrest and apoptosis in human leukemia cells. Cell Death Dis. 2013;4:e515.
Article
CAS
Google Scholar
Lee HE, Nam JS, Shin JA, Hong IS, Yang IH, You MJ, Cho SD. Convallaria keiskei as a novel therapeutic alternative for salivary gland cancer treatment by targeting myeloid cell leukemia-1. Head Neck. 2016;38(Suppl 1):E761-70.
PubMed
Google Scholar
Thomas LW, Lam C, Edwards SW. Mcl-1; the molecular regulation of protein function. FEBS Lett. 2010;584:2981–9.
Article
CAS
Google Scholar
Yang IH, Jung W, Kim LH, Shin JA, Cho NP, Hong SD, Hong KO, Cho SD. Nitidine chloride represses Mcl-1 protein via lysosomal degradation in oral squamous cell carcinoma. J Oral Pathol Med. 2018;47:823–9.
Article
CAS
Google Scholar
Yang IH, Hong SH, Jung M, Ahn CH, Yoon HJ, Hong SD, Cho SD, Shin JA. Cryptotanshinone chemosensitivity potentiation by TW-37 in human oral cancer cell lines by targeting STAT3-Mcl-1 signaling. Cancer Cell Int. 2020;20:405.
Article
CAS
Google Scholar
Li S, Guo W, Wu H. The role of post-translational modifications in the regulation of MCL1. Cell Signal. 2021;81:109933.
Article
CAS
Google Scholar
Wu X, Luo Q, Liu Z. Ubiquitination and deubiquitination of MCL1 in cancer: deciphering chemoresistance mechanisms and providing potential therapeutic options. Cell Death Dis. 2020;11:556.
Article
CAS
Google Scholar
Thomas E, Gopalakrishnan V, Somasagara RR, Choudhary B, Raghavan SC. Extract of vernonia condensata, inhibits tumor progression and improves survival of tumor-allograft bearing mouse. Sci Rep. 2016;6:23255.
Article
CAS
Google Scholar
Ruvolo PP, Deng X, May WS. Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia. 2001;15:515–22.
Article
CAS
Google Scholar
Blagosklonny MV. Unwinding the loop of Bcl-2 phosphorylation. Leukemia. 2001;15:869–74.
Article
CAS
Google Scholar
Yanamadala V, Negoro H, Gunaratnam L, Kong T, Denker BM. Galpha12 stimulates apoptosis in epithelial cells through JNK1-mediated Bcl-2 degradation and up-regulation of IkappaBalpha. J Biol Chem. 2007;282:24352–63.
Article
CAS
Google Scholar
Haldar S, Jena N, Croce CM. Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA. 1995;92:4507–11.
Article
CAS
Google Scholar
Haldar S, Basu A, Croce CM. Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells. Cancer Res. 1998;58:1609–15.
PubMed
CAS
Google Scholar
Kondo E, Miyake T, Shibata M, Kimura T, Iwagaki H, Nakamura S, Tanaka T, Ohara N, Ichimura K, Oka T, Yanai H, Shibasaki F. Yoshino T Expression of phosphorylated Ser70 of Bcl-2 correlates with malignancy in human colorectal neoplasms. Clin Cancer Res. 2005;11:7255–63.
Article
CAS
Google Scholar
Haldar S, Chintapalli J, Croce CM. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 1996;56:1253–5.
PubMed
CAS
Google Scholar
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27:6245–51.
Article
CAS
Google Scholar
Xu R, Hu J. The role of JNK in prostate cancer progression and therapeutic strategies. Biomed Pharmacother. 2020;121:109679.
Article
CAS
Google Scholar
Zhang YX, Kong CZ, Wang HQ, Wang LH, Xu CL, Sun YH. Phosphorylation of Bcl-2 and activation of caspase-3 via the c-Jun N-terminal kinase pathway in ursolic acid-induced DU145 cells apoptosis. Biochimie. 2009;91:1173–9.
Article
CAS
Google Scholar
Zhang YX, Kong CZ, Wang LH, Li JY, Liu XK, Xu B, Xu CL, Sun YH. Ursolic acid overcomes Bcl-2-mediated resistance to apoptosis in prostate cancer cells involving activation of JNK-induced Bcl-2 phosphorylation and degradation. J Cell Biochem. 2010;109:764–73.
Article
CAS
Google Scholar
Xiao D, Choi S, Johnson DE, Vogel VG, Johnson CS, Trump DL, Lee YJ, Singh SV. Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene. 2004;23:5594–606.
Article
CAS
Google Scholar