Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92.
Article
PubMed
PubMed Central
Google Scholar
Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018;52(Pt 2):228–40.
Article
CAS
PubMed
Google Scholar
Kobayashi K, Hisamatsu K, Suzui N, Hara A, Tomita H, Miyazaki T. A review of hpv-related head and neck cancer. J Clin Med. 2018;7(9):241.
Article
CAS
PubMed Central
Google Scholar
Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269–82.
Article
CAS
PubMed
Google Scholar
The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.
Article
Google Scholar
Katase N, Gunduz M, Beder L, Gunduz E, Lefeuvre M, Hatipoglu OF, Borkosky SS, Tamamura R, Tominaga S, Yamanaka N, Shimizu K, Nagai N, Nagatsuka H. Deletion at Dickkopf (dkk)-3 locus (11p15.2) is related with lower lymph node metastasis and better prognosis in head and neck squamous cell carcinomas. Oncol Res. 2008;17(6):273–82.
Article
CAS
PubMed
Google Scholar
Katase N, Nagano K, Fujita S. DKK3 expression and function in head and neck squamous cell carcinoma and other cancers. J Oral Biosci. 2020;62(1):9–15.
Article
PubMed
Google Scholar
Leonard JL, Leonard DM, Wolfe SA, Liu J, Rivera J, Yang M, Leonard RT, Johnson JPS, Kumar P, Liebmann KL, Tutto AA, Mou Z, Simin KJ. The Dkk3 gene encodes a vital intracellular regulator of cell proliferation. PLoS ONE. 2017;12(7):e0181724.
Article
PubMed
PubMed Central
Google Scholar
Lee EJ, Nguyen QTT, Lee M. Dickkopf-3 in human malignant tumours: a clinical viewpoint. Anticancer Res. 2020;40(11):5969–79.
Article
CAS
PubMed
Google Scholar
Fujii M, Katase N, Lefeuvre M, Gunduz M, Buery RR, Tamamura R, Tsujigiwa H, Nagatsuka H. Dickkopf (Dkk)-3 and β-catenin expressions increased in the transition from normal oral mucosal to oral squamous cell carcinoma. J Mol Histol. 2011;42(6):499–504.
Article
CAS
PubMed
Google Scholar
Katase N, Lefeuvre M, Gunduz M, Gunduz E, Beder LB, Grenman R, Fujii M, Tamamura R, Tsujigiwa H, Nagatsuka H. Absence of Dickkopf (Dkk)-3 protein expression is correlated with longer disease-free survival and lower incidence of metastasis in head and neck squamous cell carcinoma. Oncol Lett. 2012;3(2):273–80.
Article
CAS
PubMed
Google Scholar
Katase N, Lefeuvre M, Tsujigiwa H, Fujii M, Ito S, Tamamura R, Buery RR, Gunduz M, Nagatsuka H. Knockdown of Dkk-3 decreases cancer cell migration and invasion independently of the Wnt pathways in oral squamous cell carcinoma-derived cells. Oncol Rep. 2013;29(4):1349–55.
Article
CAS
PubMed
Google Scholar
Katase N, Kudo K, Ogawa K, Sakamoto Y, Nishimatsu SI, Yamauchi A, Fujita S. DKK3/CKAP4 axis is associated with advanced stage and poorer prognosis in oral cancer. Oral Dis. 2022. https://doi.org/10.1111/odi.14277.
Article
PubMed
Google Scholar
Katase N, Nishimatsu SI, Yamauchi A, Yamamura M, Terada K, Itadani M, Okada N, Hassan NMM, Nagatsuka H, Ikeda T, Nohno T, Fujita S. DKK3 overexpression increases the malignant properties of head and neck squamous cell carcinoma cells. Oncol Res. 2018;26(1):45–58.
Article
PubMed
PubMed Central
Google Scholar
Katase N, Nishimatsu SI, Yamauchi A, Yamamura M, Fujita S. DKK3 knockdown confers negative effects on the malignant potency of head and neck squamous cell carcinoma cells via the PI3K/Akt and MAPK signaling pathways. Int J Oncol. 2019;54(3):1021–32.
CAS
PubMed
Google Scholar
Baranyi L, Campbell W, Ohshima K, Fujimoto S, Boros M, Okada H. The antisense homology box: a new motif within proteins that encodes biologically active peptides. Nat Med. 1995;1(9):894–901.
Article
CAS
PubMed
Google Scholar
Campbell W, Kleiman L, Barany L, Li Z, Khorchid A, Fujita E, Okada N, Okada H. A novel genetic algorithm for designing mimetic peptides that interfere with the function of a target molecule. Microbiol Immunol. 2002;46(3):211–5.
Article
CAS
PubMed
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poorebrahim M, Sadeghi S, Rahimi H, Karimipoor M, Azadmanesh K, Mazlomi MA, Teimoori-Toolabi L. Rational design of DKK3 structure-based small peptides as antagonists of Wnt signaling pathway and in silico evaluation of their efficiency. PLoS ONE. 2017;12(2):e0172217.
Article
PubMed
PubMed Central
Google Scholar
Fujii Y, Hoshino T, Kumon H. Molecular simulation analysis of the structure complex of C2 domains of DKK family members and beta-propeller domains of LRP5/6: explaining why DKK3 does not bind to LRP5/6. Acta Med Okayama. 2014;68(2):63–78.
PubMed
Google Scholar
Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325.
Article
PubMed
Google Scholar
Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J. Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7(8):1511–22.
Article
PubMed
PubMed Central
Google Scholar
Xu J. Distance-based protein folding powered by deep learning. Proc Natl Acad Sci USA. 2019;116(34):16856–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput Biol. 2017;13(1):e1005324.
Article
PubMed
PubMed Central
Google Scholar
Xu J, Wang S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins. 2019;87(12):1069–81.
Article
CAS
PubMed
Google Scholar
Wang S, Li Z, Yu Y, Xu J. Folding membrane proteins by deep transfer learning. Cell Syst. 2017;5(3):202–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Sun S, Xu J. Analysis of deep learning methods for blind protein contact prediction in CASP12. Proteins. 2018. https://doi.org/10.1002/prot.25377.
Article
PubMed
Google Scholar
Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;8:5836–40.
Article
Google Scholar
Takeuchi T, Futaki S. Current understanding of direct translocation of arginine-rich cell-penetrating peptides and its internalization mechanisms. Chem Pharm Bull (Tokyo). 2016. https://doi.org/10.1248/cpb.c16-00505.
Article
Google Scholar
Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA. Conjugation of arginine oligomers to cyclosporin a facilitates topical delivery and inhibition of inflammation. Nat Med. 2000;6(11):1253–7.
Article
CAS
PubMed
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.
Article
CAS
PubMed
Google Scholar
Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. Performance and its limits in rigid body protein–protein docking. Structure. 2020;28(9):1071–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Kozakov D. New additions to the ClusPro server motivated by CAPRI. Proteins. 2017;85(3):435–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12(2):255–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozakov D, Beglov D, Bohnuud T, Mottarella S, Xia B, Hall DR, Vajda S. How good is automated protein docking? Proteins. 2013;81(12):2159–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deshmukh A, Rao KN, Arora RD, Nagarkar NM, Singh A, Shetty OS. Molecular insights into oral malignancy. Indian J Surg Oncol. 2022;13(2):267–80.
Article
PubMed
Google Scholar
Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 2006;25(57):7469–81.
Article
CAS
PubMed
Google Scholar
Veeck J, Dahl E. Targeting the Wnt pathway in cancer: the emerging role of Dickkopf-3. Biochim Biophys Acta. 2012;1825(1):18–28.
CAS
PubMed
Google Scholar
Tsuji T, Miyazaki M, Sakaguchi M, Inoue Y, Namba M. A REIC gene shows down-regulation in human immortalized cells and human tumor-derived cell lines. Biochem Biophys Res Commun. 2000;268(1):20–4.
Article
CAS
PubMed
Google Scholar
Kobayashi K, Ouchida M, Tsuji T, Hanafusa H, Miyazaki M, Namba M, Shimizu N, Shimizu K. Reduced expression of the REIC/Dkk-3 gene by promoter-hypermethylation in human tumor cells. Gene. 2002;282(1–2):151–8.
Article
CAS
PubMed
Google Scholar
Hamzehzadeh L, Caraglia M, Atkin SL, Sahebkar A. Dickkopf homolog 3 (DKK3): a candidate for detection and treatment of cancers? J Cell Physiol. 2018;233(6):4595–605.
Article
CAS
PubMed
Google Scholar
Kumon H, Ariyoshi Y, Sasaki K, Sadahira T, Araki M, Ebara S, Yanai H, Watanabe M, Nasu Y. Adenovirus vector carrying REIC/DKK-3 gene: neoadjuvant intraprostatic injection for high-risk localized prostate cancer undergoing radical prostatectomy. Cancer Gene Ther. 2016;23(11):400–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oyama A, Shiraha H, Uchida D, Iwamuro M, Kato H, Takaki A, Ikeda F, Onishi H, Yasunaka T, Takeuchi Y, Wada N, Iwasaki Y, Sakata M, Okada H, Kumon H. A Phase I/Ib trial of Ad-REIC in liver cancer: study protocol. Future Oncol. 2019;31:3547–54.
Article
Google Scholar
Westin SN, Fellman B, Sun CC, Broaddus RR, Woodall ML, Pal N, Urbauer DL, Ramondetta LM, Schmeler KM, Soliman PT, Fleming ND, Burzawa JK, Nick AM, Milbourne AM, Yuan Y, Lu KH, Bodurka DC, Coleman RL, Yates MS. Prospective phase II trial of levonorgestrel intrauterine device: nonsurgical approach for complex atypical hyperplasia and early-stage endometrial cancer. Am J Obstet Gynecol. 2021;224(2):191.e1-191.e15.
Article
Google Scholar
Zenzmaier C, Hermann M, Hengster P, Berger P. Dickkopf-3 maintains the PANC-1 human pancreatic tumor cells in a dedifferentiated state. Int J Oncol. 2012;40(1):40–6.
CAS
PubMed
Google Scholar
Zhou L, Husted H, Moore T, Lu M, Deng D, Liu Y, Ramachandran V, Arumugam T, Niehrs C, Wang H, Chiao P, Ling J, Curran MA, Maitra A, Hung MC, Lee JE, Logsdon CD, Hwang RF. Suppression of stromal-derived Dickkopf-3 (DKK3) inhibits tumor progression and prolongs survival in pancreatic ductal adenocarcinoma. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aat3487.
Article
PubMed
PubMed Central
Google Scholar
Kajiwara C, Fumoto K, Kimura H, Nojima S, Asano K, Odagiri K, Yamasaki M, Hikita H, Takehara T, Doki Y, Morii E, Kikuchi A. p63-dependent Dickkopf3 expression promotes esophageal cancer cell proliferation via CKAP4. Cancer Res. 2018;78(21):6107–20.
Article
CAS
PubMed
Google Scholar
Wang Z, Lin L, Thomas DG, Nadal E, Chang AC, Beer DG, Lin J. The role of Dickkopf-3 overexpression in esophageal adenocarcinoma. J Thorac Cardiovasc Surg. 2015;150(2):377-385.e2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kikuchi A, Matsumoto S, Sada R. Dickkopf signaling, beyond Wnt-mediated biology. Semin Cell Dev Biol. 2022;125:55–65.
Article
CAS
PubMed
Google Scholar
Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, Brown DE, Guyot D, Mays G, Leiby K, Chang B, Duong T, Goodearl AD, Gearing DP, Sokol SY, McCarthy SA. Functional and structural diversity of the human Dickkopf gene family. Gene. 1999;238(2):301–13.
Article
CAS
PubMed
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel S, Barkell AM, Gupta D, Strong SL, Bruton S, Muskett FW, Addis PW, Renshaw PS, Slocombe PM, Doyle C, Clargo A, Taylor RJ, Prosser CE, Henry AJ, Robinson MK, Waters LC, Holdsworth G, Carr MD. Structural and functional analysis of Dickkopf 4 (Dkk4): new insights into Dkk evolution and regulation of Wnt signaling by Dkk and Kremen proteins. J Biol Chem. 2018;293(31):12149–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zebisch M, Jackson VA, Zhao Y, Jones EY. Structure of the dual-mode wnt regulator Kremen1 and insight into ternary complex formation with LRP6 and Dickkopf. Structure. 2016;24(9):1599–605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kano J, Wang H, Zhang H, Noguchi M. Roles of DKK3 in cellular adhesion, motility, and invasion through extracellular interaction with TGFBI. FEBS J. 2022. https://doi.org/10.1111/febs.16529.
Article
PubMed
Google Scholar
Lee EJ, Jo M, Rho SB, Park K, Yoo YN, Park J, Chae M, Zhang W, Lee JH. Dkk3, downregulated in cervical cancer, functions as a negative regulator of beta-catenin. Int J Cancer. 2009;124(2):287–97.
Article
CAS
PubMed
Google Scholar
Kinoshita R, Watanabe M, Huang P, Li SA, Sakaguchi M, Kumon H, Futami J. The cysteine-rich core domain of REIC/Dkk-3 is critical for its effect on monocyte differentiation and tumor regression. Oncol Rep. 2015;33(6):2908–14.
Article
CAS
PubMed
Google Scholar
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci. 2017;24(1):21.
Article
PubMed
PubMed Central
Google Scholar
Štambuk N, Konjevoda P, Turčić P, Šošić H, Aralica G, Babić D, Seiwerth S, Kaštelan Ž, Kujundžić RN, Wardega P, Žutelija JB, Gračanin AG, Gabričević M. Targeting tumor markers with antisense peptides: an example of human prostate specific antigen. Int J Mol Sci. 2019;20(9):2090.
Article
PubMed Central
Google Scholar
Centuori SM, Bauman JE. c-Met signaling as a therapeutic target in head and neck cancer. Cancer J. 2022;28(5):346–53.
Article
CAS
PubMed
Google Scholar
Khatoon E, Hegde M, Kumar A, Daimary UD, Sethi G, Bishyaee A, Kunnumakkara AB. The multifaceted role of STAT3 pathway and its implication as a potential therapeutic target in oral cancer. Arch Pharm Res. 2022;45(8):507–34.
Article
CAS
PubMed
Google Scholar