Saini S, Tulla K, Maker AV, Burman KD, Prabhakar BS. Therapeutic advances in anaplastic thyroid cancer: a current perspective. Mol Cancer. 2018;17(1):1–14.
Article
Google Scholar
Lin B, Ma H, Ma M, Zhang Z, Sun Z, Hsieh I-y, et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. Am J translational Res. 2019;11(9):5888.
Google Scholar
Pozdeyev N, Rose MM, Bowles DW, Schweppe RE. Molecular therapeutics for anaplastic thyroid cancer. In: Pozdeyev N, Rose MM, Bowles DW, Schweppe RE, editors. Seminars in cancer biology. Amsterdam: Elsevier; 2020.
Google Scholar
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim et Biophys Acta (BBA)-Molecular Cell Res. 2007;1773(8):1263–84.
Article
CAS
Google Scholar
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Experimental and Therapeutic Medicine. 2020;19(3):1997–2007.
Google Scholar
Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JH, Soria JC, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600–mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36(1):7.
Article
CAS
Google Scholar
U.S. Food and Drug Administration. FDA approves dabrafenib plus trametinib for anaplastic thyroid cancer with BRAF V600E mutation. 2018. www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm606708.htm. Accessed 7 Sept 2022
Salvatore G, Nappi TC, Salerno P, Jiang Y, Garbi C, Ugolini C, et al. A cell proliferation and chromosomal instability signature in anaplastic thyroid carcinoma. Cancer Res. 2007;67(21):10148–58.
Article
CAS
Google Scholar
Baldini E, Sorrenti S, D’Armiento E, Prinzi N, Guaitoli E, Favoriti P, et al. Aurora kinases: new molecular targets in thyroid cancer therapy. Clin Ter. 2012;163(6):e457-62.
Google Scholar
Baldini E, Tuccilli C, Prinzi N, Sorrenti S, Antonelli A, Gnessi L, et al. Effects of selective inhibitors of Aurora kinases on anaplastic thyroid carcinoma cell lines. Endocr Relat Cancer. 2014;21(5):797–811.
Article
CAS
Google Scholar
Savonarola A, Palmirotta R, Guadagni F, Silvestris F. Pharmacogenetics and pharmacogenomics: role of mutational analysis in anti-cancer targeted therapy. Pharmacogenomics J. 2012;12(4):277–86.
Article
CAS
Google Scholar
Miteva-Marcheva NN, Ivanov HY, Dimitrov DK, Stoyanova VK. Application of pharmacogenetics in oncology. Biomark Res. 2020;8(1):1–10.
Article
Google Scholar
Sini P, Gürtler U, Zahn SK, Baumann C, Rudolph D, Baumgartinger R, et al. Pharmacological profile of BI 847325, an orally bioavailable, ATP-competitive inhibitor of MEK and Aurora kinases. Mol Cancer Ther. 2016;15(10):2388–98.
Article
CAS
Google Scholar
Makhoba XH, Viegas C Jr, Mosa RA, Viegas FP, Pooe OJ. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Design Dev Ther. 2020;14:3235.
Article
CAS
Google Scholar
Szumilak M, Wiktorowska-Owczarek A, Stanczak A. Hybrid drugs—a strategy for overcoming anticancer drug resistance? Molecules. 2021;26(9):2601.
Article
CAS
Google Scholar
Schöffski P, Aftimos P, Dumez H, Deleporte A, De Block K, Costermans J, et al. A phase I study of two dosing schedules of oral BI 847325 in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2016;77(1):99–108.
Article
Google Scholar
Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. Archi Med Sci. 2018;14(4):910–9.
Google Scholar
Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33.
Article
CAS
Google Scholar
Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol. 2018;9:6.
Article
Google Scholar
Samimi H, Sohi AN, Irani S, Arefian E, Mahdiannasser M, Fallah P, et al. Alginate-based 3D cell culture technique to evaluate the half-maximal inhibitory concentration: an in vitro model of anticancer drug study for anaplastic thyroid carcinoma. Thyroid Res. 2021;14(1):1–9.
Article
Google Scholar
Samimi H, Haghpanah V, Irani S, Fallah P, Arefian E, Soleimani M. Determination of ATP-Competitive inhibitor drug toxicity in anaplastic thyroid Cancer based on cell characteristics and Three-Dimensional Cell Culture. Modares J Biotechnol. 2019;10(3):503–9.
Google Scholar
Samimi H, Haghpanah V, Irani S, Arefian E, Sohi AN, Fallah P, et al. Transcript-level regulation of MALAT1-mediated cell cycle and apoptosis genes using dual MEK/Aurora kinase inhibitor “BI-847325” on anaplastic thyroid carcinoma. DARU J Pharm Sci. 2019;27(1):1–7.
Article
CAS
Google Scholar
Eslami A, Lujan J. Western blotting: sample preparation to detection. JoVE (Journal of Visualized Experiments). 2010;44.
Google Scholar
Bruce JL, Hurford RK Jr, Classon M, Koh J, Dyson N. Requirements for cell cycle arrest by p16INK4a. Mol Cell. 2000;6(3):737–42.
Article
CAS
Google Scholar
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div. 2018;13(1):1–17.
Article
Google Scholar
Kassardjian A, Rizkallah R, Riman S, Renfro SH, Alexander KE, Hurt MM. The transcription factor YY1 is a novel substrate for Aurora B kinase at G2/M transition of the cell cycle. PLoS ONE. 2012;7(11):e50645.
Article
CAS
Google Scholar
Pilli T, Prasad KV, Jayarama S, Pacini F, Prabhakar BS. Potential utility and limitations of thyroid cancer cell lines as models for studying thyroid cancer. Thyroid. 2009;19(12):1333–42.
Article
CAS
Google Scholar
Samimi H, Fallah P, Sohi AN, Tavakoli R, Naderi M, Soleimani M, et al. Precision medicine approach to anaplastic thyroid cancer: advances in targeted drug therapy based on specific signaling pathways. Acta Medica Iranica. 2017;55:200–8.
Google Scholar
Meireles AM, Preto A, Rocha AS, Rebocho AP, Máximo V, Pereira-Castro I, et al. Molecular and genotypic characterization of human thyroid follicular cell carcinoma–derived cell lines. Thyroid. 2007;17(8):707–15.
Article
CAS
Google Scholar
Landa I, Pozdeyev N, Korch C, Marlow LA, Smallridge RC, Copland JA, et al. Comprehensive genetic characterization of human thyroid cancer cell lines: a validated panel for preclinical studies. Clin Cancer Res. 2019;25(10):3141–51.
Article
CAS
Google Scholar
Perri F, Di Lorenzo G, Scarpati GDV, Buonerba C. Anaplastic thyroid carcinoma: a comprehensive review of current and future therapeutic options. World J Clin Oncol. 2011;2(3):150.
Article
Google Scholar
Cabanillas ME, Zafereo M, Gunn GB, Ferrarotto R. Anaplastic thyroid carcinoma: treatment in the age of molecular targeted therapy. J Oncol Pract. 2016;12(6):511–8.
Article
Google Scholar
Zheng X, Cui D, Xu S, Brabant G, Derwahl M. Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: characterization of resistant cells. Int J Oncol. 2010;37(2):307–15.
CAS
Google Scholar
Abbasifarid E, Sajjadi-Jazi SM, Beheshtian M, Samimi H, Larijani B, Haghpanah V. The role of ATP-binding cassette transporters in the chemoresistance of anaplastic thyroid cancer: a systematic review. Endocrinology. 2019;160(8):2015–23.
Article
CAS
Google Scholar
Ragazzi M, Ciarrocchi A, Sancisi V, Gandolfi G, Bisagni A, Piana S. Update on anaplastic thyroid carcinoma: morphological, molecular, and genetic features of the most aggressive thyroid cancer. Int J Endocrinol. 2014;2014:790834.
Article
Google Scholar
da Silva TN, Limbert E, Leite V. Poorly differentiated thyroid carcinoma patients with detectable thyroglobulin levels after initial treatment show an increase in mortality and disease recurrence. Eur thyroid J. 2018;7(6):313–8.
Article
Google Scholar
Akagi T, Luong Q, Gui D, Said J, Selektar J, Yung A, et al. Induction of sodium iodide symporter gene and molecular characterisation of HNF3 β/FoxA2, TTF-1 and C/EBP β in thyroid carcinoma cells. Br J Cancer. 2008;99(5):781–8.
Article
CAS
Google Scholar
Carvalho DP, Ferreira AC. The importance of sodium/iodide symporter (NIS) for thyroid cancer management. Arquivos Brasileiros de Endocrinologia & Metabologia. 2007;51:672–82.
Article
Google Scholar
Lamartina L, Anizan N, Dupuy C, Leboulleux S, Schlumberger M. Redifferentiation-facilitated radioiodine therapy in thyroid cancer. Endocrine-related Cancer. 2021;28(10):T179-T91.
Article
Google Scholar
Hong CM, Ahn B-C. Redifferentiation of radioiodine refractory differentiated thyroid cancer for reapplication of I-131 therapy. Front Endocrinol. 2017;8:260.
Article
Google Scholar
Choi YJ, Lee J-E, Ji HD, Lee B-R, Lee SB, Kim KS, et al. Tunicamycin as a novel redifferentiation agent in radioiodine therapy for anaplastic thyroid cancer. Int J Mol Sci. 2021;22(3):1077.
Article
CAS
Google Scholar
Fu H, Cheng L, Jin Y, Cheng L, Liu M, Chen L. MAPK inhibitors enhance HDAC inhibitor-induced redifferentiation in papillary thyroid cancer cells harboring BRAFV600E: an in vitro study. Mol Therapy-Oncolytics. 2019;12:235–45.
Article
CAS
Google Scholar
Soh EY. Implication of angiogenesis in thyroid Cancer. Korean J Endocr Surg. 2002;2(1):1–4.
Article
Google Scholar
Montero-Conde C, Martin-Campos J, Lerma E, Gimenez G, Martinez-Guitarte J, Combalia N, et al. Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene. 2008;27(11):1554–61.
Article
CAS
Google Scholar
Enokida T, Tahara M. Management of VEGFR-Targeted TKI for thyroid Cancer. Cancers. 2021;13(21):5536.
Article
CAS
Google Scholar
Porter A, Wong DJ. Perspectives on the treatment of advanced thyroid cancer: approved therapies, resistance mechanisms, and future directions. Front Oncol. 2021. https://doi.org/10.3389/fonc.2020.592202.
Article
Google Scholar
Han M-Y, Kosako H, Watanabe T, Hattori S. Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Mol Cell Biol. 2007;27(23):8190–204.
Article
CAS
Google Scholar
Baldini E, D’Armiento M, Ulisse S. A new aurora in anaplastic thyroid cancer therapy. Int J Endocrinol. 2014;2014:816430.
Article
Google Scholar
Wu X, Liu J-m, Song H-h, Yang Q-k, Ying H, Tong W-l, et al. Aurora-B knockdown inhibits osteosarcoma metastasis by inducing autophagy via the mTOR/ULK1 pathway. Cancer Cell Int. 2020;20(1):1–14.
Article
Google Scholar
Bejar JF, DiSanza Z, Quartuccio SM. The oncogenic role of meiosis-specific Aurora kinase C in mitotic cells. Exp Cell Res. 2021;407(2):112803.
Article
CAS
Google Scholar
Milosevic Z, Pesic M, Stankovic T, Dinic J, Milovanovic Z, Stojsic J, et al. Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Translational Res. 2014;164(5):411–23.
Article
CAS
Google Scholar
Balmanno K, Cook S. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differentiation. 2009;16(3):368–77.
Article
CAS
Google Scholar
Ahmed KM, Dong S, Fan M, Li JJ. Nuclear factor-κB p65 inhibits mitogen-activated protein kinase signaling pathway in radioresistant breast cancer cells. Mol Cancer Res. 2006;4(12):945–55.
Article
CAS
Google Scholar
Marampon F, Gravina GL, Popov VM, Scarsella L, Festuccia C, La Verghetta ME, et al. Close correlation between MEK/ERK and Aurora-B signaling pathways in sustaining tumorigenic potential and radioresistance of gynecological cancer cell lines. Int J Oncol. 2014;44(1):285–94.
Article
CAS
Google Scholar
Furukawa T, Kanai N, Shiwaku H, Soga N, Uehara A, Horii A. AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene. 2006;25(35):4831–9.
Article
CAS
Google Scholar
Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer. 2021;20(1):1–27.
Article
Google Scholar
Huang D, Huang Y, Huang Z, Weng J, Zhang S, Gu W. Relation of AURKB over-expression to low survival rate in BCRA and reversine-modulated aurora B kinase in breast cancer cell lines. Cancer Cell Int. 2019;19(1):1–13.
Article
Google Scholar
Baldini E, Tuccilli C, Prinzi N, Sorrenti S, Antonelli A, Gnessi L, et al. The dual Aurora kinase inhibitor ZM447439 prevents anaplastic thyroid cancer cell growth and tumorigenicity. J Biol Regul Homeost Agents. 2013;27(3):705–15.
CAS
Google Scholar
Arlot-Bonnemains Y, Baldini E, Martin B, Delcros J-G, Toller M, Curcio F, et al. Effects of the Aurora kinase inhibitor VX-680 on anaplastic thyroid cancer-derived cell lines. Endocrine-related Cancer. 2008;15(2):559–68.
Article
CAS
Google Scholar
Phadke MS, Sini P, Smalley KS. The novel ATP-competitive MEK/Aurora kinase inhibitor BI-847325 overcomes acquired BRAF inhibitor resistance through suppression of Mcl-1 and MEK expression. Mol Cancer Ther. 2015;14(6):1354–64.
Article
CAS
Google Scholar
Piscazzi A, Costantino E, Maddalena F, Natalicchio MI, Gerardi AMT, Antonetti R, et al. Activation of the RAS/RAF/ERK signaling pathway contributes to resistance to sunitinib in thyroid carcinoma cell lines. J Clin Endocrinol Metabolism. 2012;97(6):E898–906.
Article
CAS
Google Scholar
Khatami F, Larijani B, Heshmat R, Keshtkar A, Mohammadamoli M, Teimoori-Toolabi L, et al. Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. PLoS ONE. 2017;12(9):e0184892.
Article
Google Scholar
Smallridge RC, Marlow LA, Copland JA. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocrine-related Cancer. 2009;16(1):17–44.
Article
CAS
Google Scholar
Ulisse S, Delcros JG, Baldini E, Toller M, Curcio F, Giacomelli L, et al. Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int J Cancer. 2006;119(2):275–82.
Article
CAS
Google Scholar
Lee J-J, Au AY, Foukakis T, Barbaro M, Kiss N, Clifton-Bligh R, et al. Array-CGH identifies cyclin D1 and UBCH10 amplicons in anaplastic thyroid carcinoma. Endocrine-related Cancer. 2008;15(3):801–15.
Article
CAS
Google Scholar
Sheikkholeslami S, Zarif-Yeganeh M, Farashi S, Azizi F, Kia SK, Teimoori-Toolabi L, et al. Promoter methylation of tumor suppressors in thyroid carcinoma: a systematic review. Iran J Public Health. 2021;50(12):2461–72.
Google Scholar
Wiseman SM, Masoudi H, Niblock P, Turbin D, Rajput A, Hay J, et al. Anaplastic thyroid carcinoma: expression profile of targets for therapy offers new insights for disease treatment. Ann Surg Oncol. 2007;14(2):719–29.
Article
Google Scholar
Moura DS, Campillo-Marcos I, Vázquez-Cedeira M, Lazo PA. VRK1 and AURKB form a complex that cross inhibit their kinase activity and the phosphorylation of histone H3 in the progression of mitosis. Cell Mol Life Sci. 2018;75(14):2591–611.
Article
CAS
Google Scholar
Borah NA, Reddy MM. Aurora kinase B inhibition: a potential therapeutic strategy for cancer. Molecules. 2021;26(7):1981.
Article
CAS
Google Scholar
Sorrentino R, Libertini S, Pallante PL, Troncone G, Palombini L, Bavetsias V, et al. Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metabolism. 2005;90(2):928–35.
Article
CAS
Google Scholar
Wen-Sheng W. ERK signaling pathway is involved in p15 INK4b/p16 INK4a expression and HepG2 growth inhibition triggered by TPA and Saikosaponin a. Oncogene. 2003;22(7):955–63.
Article
Google Scholar