Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–82.
Article
CAS
PubMed
Google Scholar
Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 2010;10:267–77.
Article
CAS
PubMed
Google Scholar
Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4:e532. doi:10.1038/cddis.2013.60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang D, Li J, Wanh F, Hu J, Wang S, Sun Y. 2-Deoxy-d-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Let. 2014;355:176–83.
Article
CAS
Google Scholar
Di Cosimo S, Ferretti G, Papaldo P, Carlini P, Fabi A, Cognetti F. Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today. 2003;39:157–74.
Article
PubMed
Google Scholar
Ganaphaty-Kanniappan S, Kunjithapatham R, Geswchwind JF. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res. 2013;33:13–20.
Google Scholar
Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS, Juhaszova M, et al. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One. 2008;3:1–11.
Article
Google Scholar
Pereira da Silva AP, El-Bacha T, Kyaw N, dos Santos RS, da-Silva WS, Almeida FC, et al. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem J. 2009;417:717–26.
Article
CAS
PubMed
Google Scholar
Dwarakanath BS, Jain V. Targeting glucose metabolism with 2-deoxy-d-glucose for improving cancer therapy. Future Oncol. 2009;5:581–5.
Article
CAS
PubMed
Google Scholar
Ki YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL. A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr. 2012;44:163–70.
Article
Google Scholar
Calviño E, Estañ MC, Simon GP, Sancho P, Boyano-Adanez MC, de Blas E, et al. Increased apoptotic efficacy of lonidamine plus arsenic trioxide combination in human leukemia cells. Reactive oxygen species generation and defensive protein kinase (MEK/ERK, Akt/mTOR) modulation. Biochem Pharmacol. 2011;82:1619–29.
Article
PubMed
Google Scholar
Estañ MC, Calviño E, de Blas E, Boyano-Adanez MC, Mena ML, Gómez-Gómez M, et al. 2-Deoxy-d-glucose cooperates with arsenic trioxide to induce apoptosis in leukemia cells: involvement of IGF-1R-regulated Akt/mTOR, MEK/ERK and LKB-1/AMPK signaling pathways. Biochem Pharmacol. 2012;84:1604–16.
Article
PubMed
Google Scholar
Zhong D, Liu X, Schafer-Hales K, Marcus AI, Khuri FR, Sun SY, et al. 2-Deoxyglucose induces Akt phosphorylation via a mechanism independent of LKB1/AMP-activated protein kinase signaling activation or glycolysis inhibition. Mol Cancer Ther. 2008;7:809–17.
Article
CAS
PubMed
Google Scholar
Zhong D, Xiong L, Liu T, Liu X, Liu X, Chen J, et al. The glycolytic inhibitor 2-deoxyglucose activates multiple prosurvival pathways through IGF1R. J Biol Chem. 2009;284:23225–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Salvo J, Kuznestsov JN, Du J, Leclerk GM, Lampidis TJ, Barredo JC. Inhibition of Akt potentiates 2-DG-induced apoptosis via downregulation of UPR in acute lymphoblastic leukemia. Mol Cancer Res. 2012;10:969–78.
Article
Google Scholar
Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, Modesti A, et al. In vitro and in vivo antitumoural effects of combinations of polyphenols or polyphenols and anticancer drugs: perspectives on cancer. Int J Mol Sci. 2015;16:9236–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res. 2008;52:507–26.
Article
CAS
PubMed
Google Scholar
Prasad S, Phromnoi K, Yadav VR, Chaturvedi MM, Aggarwal BB. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med. 2010;76:1044–63.
Article
CAS
PubMed
Google Scholar
Imai Y, Yamagishi H, Ono Y, Ueda Y. Versatile inhibitory effects of the flavonoid-derived PI3K/Akt inhibitor, LY294002, on ATP-binding cassette transporters that characterize stem cells. Clin Transl Med. 2012;1:24. doi:10.1186/2001-1326-24.
Article
PubMed
PubMed Central
Google Scholar
Ramos AM, Aller P. Quercetin decreases intracellular GSH content and potentiates the apoptotic action of the antileukemic drug arsenic trioxide in human leukemia cell lines. Biochem Pharmacol. 2008;75:1912–23.
Article
CAS
PubMed
Google Scholar
Sánchez Y, Simón GP, Calviño E, de Blas E, Aller P. Curcumin stimulates reactive oxygen species production and potentiates apoptosis induction by the antitumour drugs arsenic trioxide and lonidamine in human myeloid leukemia cell lines. J Pharmacol Exp Ther. 2010;335:114–23.
Article
PubMed
Google Scholar
Sánchez Y, Amrán D, de Blas E, Aller P. Regulation of genistein-induced differentiation in human myeloid leukaemia cells (HL60, NB4). Protein kinase modulation and reactive oxygen species generation. Biochem Pharmacol. 2009;77:384–96.
Article
PubMed
Google Scholar
Collins SJ, Gallo RC, Gallagher RE. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977;270:347–9.
Article
CAS
PubMed
Google Scholar
Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980;26:171–6.
Article
CAS
PubMed
Google Scholar
Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R. NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood. 1991;77:1080–6.
CAS
PubMed
Google Scholar
Troyano A, Fernández C, Sancho P, de Blas E, Aller P. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation. J Biol Chem. 2001;50:47107–15.
Article
Google Scholar
Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, et al. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J. 1999;76:725–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galan A, Garcia-Bermejo ML, Troyano A, Vilaboa NE, de Blas E, Kazanietz MG, et al. Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. J Biol Chem. 2000;275:11418–24.
Article
CAS
PubMed
Google Scholar
Sánchez Y, Amrán D, Fernández C, de Blas E, Aller P. Genistein selectively potentiates arsenic trioxide-induced apoptosis in human leukemia cells via reactive oxygen species generation and activation of reactive oxygen species-inducible protein kinases (p38-MAPK, AMPK). Int J Cancer. 2008;123:1205–14.
Article
PubMed
Google Scholar
Suganuma K, Miwa H, Imai N, Shikami M, Goto M, Mizuno S, et al. Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation. Leuk Lymphoma. 2010;51:2112–9.
Article
CAS
PubMed
Google Scholar
Park JB. Flavonoids are potential inhibitors of glucose uptake in U937 cells. Biochem Biophys Res Commun. 1999;260:568–74.
Article
CAS
PubMed
Google Scholar
Vera JC, Reyes AM, Velásques FV, Rivas CI, Zhang RH, Strobel P, et al. Direct inhibition of the hexose transporter GLUT1 by tyrosine kinase inhibitors. Biochemistry. 2001;40:777–90.
Article
CAS
PubMed
Google Scholar
Ortega R, García N. The flavonoid quercetin induces changes in mitochondrial permeability by inhibiting adenine nucleotide translocase. J Bioenerg Biomembr. 2009;41:41–7.
Article
CAS
PubMed
Google Scholar
De Marchi U, Biasutto L, Garbisa S, Toninello A, Zoratti M. Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: a demonstration of the ambivalent redox character of polyphenols. Biochim Biophys Acta. 2009;1787:1425–32.
Article
PubMed
Google Scholar
Poncet D, Boya P, Métivier D, Zamzami N, Kroemer G. Cytofluorometric quantitation of apoptosis-driven inner mitochondrial membrane permeabilization. Apoptosis. 2003;8:521–30.
Article
CAS
PubMed
Google Scholar
Bestwick CS, Milne L. Quercetin modifies reactive oxygen levels but exerts only partial protection against oxidative stress within HL-60 cells. Biochim Biophys Acta. 2001;1528:49–59.
Article
CAS
PubMed
Google Scholar
Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochorme c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999;35:1517–25.
Article
CAS
PubMed
Google Scholar
Lee WJ, Hsiao M, Chang JL, Yang SF, Tseng TH, Cheng CW, et al. Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft. Arch Toxicol. 2015;89:1103–17.
Article
CAS
PubMed
Google Scholar
Bailey HH. L-S, R-buthionine sulfoximine: historical development and clinical issues. Chem Biol Interact. 1998;111–112:239–54.
Article
PubMed
Google Scholar
Frame S, Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J. 2001;359:1–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maurer U, Preiss F, Brauns-Schubert P, Schlicher L, Charvert C. GSK-3—at the crossroads of cell death and survival. J Cell Sci. 2014;127:1369–78.
Article
CAS
PubMed
Google Scholar
Mertens-Talkot SU, Bomser JA, Romero C, Talcott ST, Percival SS. Ellagic acid potentiates the effect of quercetin on p21waf1/cip1, p53, and MAP-kinases without affecting intracellular generation of reactive oxygen species in vitro. J Nutr. 2005;135:609–14.
Google Scholar
Rubio S, Quintana J, Eiroa JL, Triana J, Estévez F. Acetyl derivative of quercetin 3-methyl ether-induced cell death in human leukemia cells is amplified by the inhibition of ERK. Carcinogenesis. 2007;28:2105–13.
Article
CAS
PubMed
Google Scholar
Calviño E, Estañ MC, Sanchez-Martin C, Brea R, de Blas E, MdelC Boyano-Adánez, et al. Regulation of death induction and chemosensitizing action of 3-bromopyruvate in myeloid leukemia cells: energy depletion, oxidative stress, and protein kinase activity modulation. J Pharmacol Exp Ther. 2014;348:324–35.
Article
PubMed
Google Scholar
Zunino SJ, Storms DH. Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett. 2006;240:123–34.
Article
CAS
PubMed
Google Scholar
Shen SC, Chen YC, Hsu FL, Lee WR. Differential apoptosis-inducing effect of quercetin and its glycosides in human promyeloleukemic HL-60 cells by alternative activation of the caspase 3 cascade. J Cell Biochem. 2003;89:1044–55.
Article
CAS
PubMed
Google Scholar
Salvi M, Brunati AM, Clari G, Toninello A. Interaction of genistein with the mitochondrial electron transport chain results in opening of the membrane transition pore. Biochim Biophys Acta. 2002;1556:187–96.
Article
CAS
PubMed
Google Scholar
Guo L, Shestov AA, Worth AJ, Nath K, Nelson DS, Leeper DB, et al. Inhibition of mitochondrial complex II by the anticancer agent lonidamine. J Biol Chem. 2016;291:42–57.
Article
CAS
PubMed
Google Scholar
Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res. 1999;57:195–206.
Article
CAS
PubMed
Google Scholar
Xi H, Barredo JC, Merchan JR, Lampidis TJ. Endoplasmic reticulum stress induced by 2-deoxyglucose but not glucose starvation activates AMPK through CaMKKβ leading to autophagy. Biochem Pharmacol. 2013;85:1463–77.
Article
CAS
PubMed
Google Scholar
Lee KH, Yoo CG. Simultaneous inactivation of GSK-3β suppresses quercetin-induced apoptosis by inhibiting the JNK pathway. Am J Physiol Lung Cell Mol Physiol. 2013;304:L782–9.
Article
CAS
PubMed
Google Scholar
Pahlke G, Ngiewith Y, Kern M, Jakobs S, Marko D, Eisenbrand G. Impact of quercetin and EGCG on key elements if the Wnt pathway in human colon carcinoma cells. J Agric Food Chem. 2006;54:7075–82.
Article
CAS
PubMed
Google Scholar
Ougolkov AV, Bone ND, Fernández-Zapico ME, Kay NE, Billadeau DD. Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood. 2007;110:735–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Uddin S, Zimmerman T, Kang JA, Ulaszek J, Wickrema A. Growth control of multiple myeloma cells through inhibition of glycogen synthase kinase-3. Leuk Lymphoma. 2008;49:1945–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song EY, Palladinetti P, Klamer G, Ko KH, Lindeman R, O¨Brien TA, et al. Glycogen synthase kinase–3β inhibitors suppress leukemia cell growth. Exp Hematol. 2010;38:908–21.
Article
CAS
PubMed
Google Scholar
Banerji V, Frumm SM, Ross KN, Li LS, Schinzel AC, Hahn CK, et al. The intersection of genetic and chemical genomic screens indentifies GSK-3α as a target in human acute meyloid leukemia. J Clin Invest. 2012;122:935–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piazza F, Manni S, Tubi LQ, Montine B, Pavan L, Colpo A, et al. Glycogen synthase kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death. BMC Cancer. 2010;10:526. doi:10.1186/1471-2407-10-526.
Article
CAS
PubMed
PubMed Central
Google Scholar