Lu SC. S-Adenosylmethionine. Int J Biochem Cell Biol. 2000;32:391–5.
Article
CAS
PubMed
Google Scholar
Mato JM, Martinez-Chantar ML, Lu SC. S-Adenosylmethionine metabolism and liver disease. Ann Hepatol. 2013;12:183–9.
CAS
PubMed
PubMed Central
Google Scholar
Fontecave M, Atta M, Mulliez E. S-Adenosylmethionine: nothing goes to waste. Trends Biochem Sci. 2004;29:243–9.
Article
CAS
PubMed
Google Scholar
Pajares MA, Markham GD. Methionine adenosyltransferase (S-Adenosylmethionine-synthetase). Adv Enzymol Relat Areas Mol Biol. 2011;78:449–52.
Article
CAS
PubMed
Google Scholar
Porcelli M, Ilisso CP, Mosca L, Cacciapuoti G. A thermostable archaeal S-adenosylmethionine synthetase: a promising tool to improve the synthesis of adenosylmethionine analogs of biotechnological interest. Bioengineered. 2015;6(3):184–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porcelli M, Ilisso CP, De Leo E, Cacciapuoti G. Biochemical characterization of a thermostable adenosylmethionine synthetase from the Archaeon Pyrococcus Furiosus with high catalytic power. Appl Biochem Biotechnol. 2015;175(6):2916–33.
Article
CAS
PubMed
Google Scholar
Kotb M, Geller AM. Methionine adenosyltransferase: structure and function. Pharmacol Ther. 1993;59:125–43.
Article
CAS
PubMed
Google Scholar
Lu SC, Mato JM. S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol. 2008;1:S73–7.
Article
CAS
Google Scholar
Luo J, Li YN, Wang F, Zhang WM, Geng X. S-Adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int J Biol Sci. 2010;6(7):784–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frau M, Feo F, Pascale RM. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J Hepatol. 2013;59(4):830–41.
Article
CAS
PubMed
Google Scholar
Ilisso CP, Sapio L, Delle Cave D, Illiano M, Spina A, Cacciapuoti G, Naviglio S, Porcelli M. S-Adenosylmethionine affects ERK1/2 and Stat3 pathways and induces apoptosis in osteosarcoma cells. J Cell Physiol. 2016;231(2):428–35.
Article
CAS
PubMed
Google Scholar
Delle Cave D, Desiderio V, Mosca L, Ilisso CP, Mele L, Caraglia M, Cacciapuoti G, Porcelli M. S-Adenosylmethionine-mediated apoptosis is potentiated by autophagy inhibition induced by chloroquine in human breast cancer cells. J Cell Physiol. 2018;233:1370–83.
Article
CAS
Google Scholar
Delle Cave D, Ilisso CP, Mosca L, Pagano M, Martino E, Porcelli M, Cacciapuoti G. The anticancer effects of S-adenosylmethionine on breast cancer cells. JSM Chem. 2017;5(3):1049.
Google Scholar
Ilisso CP, Castellano M, Zappavigna S, Lombardi A, Vitale G, Dicitore A, Cacciapuoti G, Caraglia M, Porcelli M. The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines. Endocrine. 2015;50:212–22.
Article
CAS
PubMed
Google Scholar
Chik F, Machnes Z, Szyf M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Carcinogenesis. 2014;35(1):138–44.
Article
CAS
PubMed
Google Scholar
Yang H, Cho ME, Li TW, Peng H, Ko KS, Mato JM, Lu SC. MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J ClinInvest. 2012;123:285–98.
Google Scholar
Koturbash I, Melnyk S, James SJ, Beland FA, Pogribny IP. Role of epigenetic and miR-22 and miR-29b alterations in the downregulation of Mat1a and Mthfr genes in early preneoplastic livers in rats induced by 2-acetylaminofluorene. Mol Carcinog. 2013;52(4):318–27.
Article
CAS
PubMed
Google Scholar
Lo TF, Tsai WC, Chen ST. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS ONE. 2013;8(9):e75628.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.
Article
CAS
PubMed
Google Scholar
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.
Article
CAS
PubMed
Google Scholar
Felekkis K, Touvana E, Stefanou C, Deltas C. MicroRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14(4):236–40.
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)). Method Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelledAnnexin V. J Immunol Methods. 1995;184:39–51.
Article
CAS
PubMed
Google Scholar
Chikte S, Panchal N, Warnes G. Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytometry A. 2014;85(2):169–78.
Article
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
PubMed
Google Scholar
Dawson VL, Dawson TM. Deadly conversations: nuclear mitochondrial cross-talk. J Bioenerg Biomembr. 2004;36(4):287–94.
Article
CAS
PubMed
Google Scholar
Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S, Ragno R. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev. 2005;25(3):261–309.
Article
CAS
PubMed
Google Scholar
Cao LL, Song X, Pei L, Liu L, Wang H, Jia M. Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer: a meta-analysis. Medicine. 2017;96(31):e7663.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawai H, Li H, Avraham S, Jiang S, Avraham HK. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor. Int J Cancer. 2003;107(3):353–8.
Article
CAS
PubMed
Google Scholar
Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408(6810):377–81.
Article
CAS
PubMed
Google Scholar
Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS, Wu CW. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem. 2000;275(27):20436–43.
Article
CAS
PubMed
Google Scholar
Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone MR, Gullà A, Tagliaferri P, Tassone P, Caraglia M. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. 2014;3:e194.
Article
CAS
PubMed
Google Scholar
Li XJ, Ren ZJ, Tang JH. MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis. 2014;5:e1327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahman S, Islam R. Mammalian Sirt1: insights on its biological functions. Cell Commun Signal. 2011;9:11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu TF, McCall CE. Deacetylation by SIRT1 reprograms inflammation and cancer. Genes Cancer. 2013;4(3–4):135–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi J, Luo J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta. 2010;1804(8):1684–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JT, Gu W. SIRT1: regulator of p53 deacetylation. Genes Cancer. 2013;4(3–4):112–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong J. Atg7 in development and disease: panacea or Pandora’s box? Protein Cell. 2015;6(10):722–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 2007;7:839–49.
Article
CAS
Google Scholar
Kang R, Zeh HJ, Lotze MT, Tang D. The beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18(4):571–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36:2503–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542–5.
Article
CAS
PubMed
Google Scholar
Georgescu MM. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer. 2010;1(12):1170–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Lee AV, Rosen JM. The cellular origin and evolution of breast cancer. Cold Spring Harb Perspect Med. 2017. https://doi.org/10.1101/cshperspect.a027128.
Article
PubMed
PubMed Central
Google Scholar
Alabdulkareem H, Pinchinat T, Khan S, Landers A, Christos P, Simmons R, Moo TA. The impact of molecular subtype on breast cancer recurrence in young women treated with contemporary adjuvant therapy. Breast J. 2018;24(2):148–53.
Article
CAS
PubMed
Google Scholar
Wang Z, Zhou Z, Li W, Wang W, Xie X, Liu J, Song Y, Dang C, Zhang H. Treatment strategies and predicting prognoses in elderly patients with breast cancer. Cancer Manag Res. 2018;10:3207–18.
Article
PubMed
PubMed Central
Google Scholar
Howell A, Anderson AS, Clarke RB, Duffy SW, Evans DG, Garcia-Closas M, Gescher AJ, Key TJ, Saxton JM, Harvie MN. Risk determination and prevention of breast cancer. Breast Cancer Res. 2014;16(5):446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan CWH, Law BMH, So WKW, Chow KM, Waye MMY. Novel strategies on personalized medicine for breast cancer treatment: an update. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18112423.
Article
PubMed
PubMed Central
Google Scholar
Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D, Lilja H, Ceder Y. MiR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer. 2010;127:2768–76.
Article
CAS
PubMed
Google Scholar
Roy S, Levi E, Majumdar AP, Sarkar FH. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol. 2012;5:58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garofalo M, Jeon YJ, Nuovo GJ, Middleton J, Secchiero P, Joshi P, Alder H, Nazaryan N, Di Leva G, Romano G, Crawford M, Nana-Sinkam P, Croce CM. MiR-34a/c-dependent PDGFR-alpha/beta downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer. PLoS ONE. 2013;8:e67581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, Maris JM. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res. 2008;6:735–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Javeri A, Ghaffarpour M, Taha MF, Houshmand M. Downregulation of miR-34a in breast tumors is not associated with either p53 mutations or promoter hypermethylation while it correlates with metastasis. Med Oncol. 2013;30:413.
Article
CAS
PubMed
Google Scholar
Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, Chen H, Ding F, Wang X, Liu Z. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene. 2013;32:4294–303.
Article
CAS
PubMed
Google Scholar
Achari C, Winslow S, Ceder Y, Larsson C. Expression of miR-34c induces G2/M cell cycle arrest in breast cancer cells. BMC Cancer. 2014;14:538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun TY, Xie HJ, Li Z, Kong LF, Gou XN, Li DJ, Shi YJ, Ding YZ. MiR-34a regulates HDAC1 expression to affect the proliferation and apoptosis of hepatocellular carcinoma. Am J Transl Res. 2017;9(1):103–14.
CAS
PubMed
PubMed Central
Google Scholar
Yamakuchi M, Ferlito M, Lowenstein CJ. MiR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA. 2008;105(36):13421–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1, and p53: the feedback loop. Cell Cycle. 2009;8(5):712–5.
Article
CAS
PubMed
Google Scholar
Reed SM, Quelle DE. p53 acetylation: regulation and consequences. Cancers (Basel). 2014;7(1):30–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Tian X, Han R, Zhang X, Wang X, Shen H. Downregulation of miR-486–5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene. 2014;33(9):1181–9.
Article
CAS
PubMed
Google Scholar
Li Y, Liang L, Zhang CY. Isothermally sensitive detection of serum circulating miRNAs for lung cancer diagnosis. Anal Chem. 2013;3(23):85.
Google Scholar
Peng Y, Dai Y, Hitchcock C, Yang X, Kassis ES, Liu L. Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc Natl Acad Sci USA. 2013;110(37):15043–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Ren C, Han C, Wang D, Chen Y, Fu D. Expression and prognostic value of miR-486-5p in Patients with Gastric Adenocarcinoma. PLoS ONE. 2015;10(3):e0119384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi Y, Lu X, Chen J, Jiao C, Zhong J, Song Z, Yu X, Lin B. Downregulated miR-486-5p acts as a tumor suppressor in esophageal squamous cell carcinoma. Exp Ther Med. 2016;12(5):3411–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Ji C, Guo S, Su X, Zhao X, Zhang S, Liu G, Qiu X, Zhang Q, Guo H, Chen H. The miR-486-5p plays a causative role in prostate cancer through negative regulation of multiple tumor suppressor pathways. Oncotarget. 2017;8(42):72835–46.
PubMed
PubMed Central
Google Scholar
Zhang G, Liu Z, Cui G, Wang X, Yang Z. MicroRNA-486-5p targeting PIM-1 suppresses cell proliferation in breast cancer cells. Tumour Biol. 2014;35(11):11137–45.
Article
CAS
PubMed
Google Scholar