Skip to main content

A review on the role of cyclin dependent kinases in cancers

Abstract

The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.

Introduction

Cyclin-dependent kinases (CDKs) are a group of serine/threonine kinases with crucial roles in the regulation of cell cycle progression. The activity of these kinases is induced by cyclins. In fact, CDK/cyclin complexes control progression of the cell cycle in an orderly manner [1]. Emerging evidence suggest that CDKs and cyclins actively participate in the regulation of transcription, epigenetic mechanisms, metabolic processes and self-renewal capacity of stem cells [1]. Most notably, some of these functions are exerted in an independent manner from establishment of CDKs/cyclins complexes [1]. Another group of proteins, namely cyclin-dependent kinase inhibitors (CKIs) has been revealed to negatively regulate cyclin/CDKs. The main function of CDKIs is to obstruct cell cycle transition and suppress cell proliferation through inhibition of the enzymatic activity of CDKs. Inhibitor of CDK4 proteins and CDK-interacting protein/kinase inhibitory proteins belong to this group [2].

Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins result in unrestrained proliferation of cells leading to formation of tumors [3, 4]. Accordingly, modulation of activity of these proteins by therapeutic agents has been suggested as a promising strategy for treatment of cancers [5]. Successful introduction of these modalities into clinical settings needs proper recognition of the role of CDKs in the progression of each type of cancer, their interacting molecules and signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.

Cyclin-dependent kinase 1 (CDK1)

Cell line studies

A recent study has demonstrated that vitro that centromere protein F (CENPF) through interaction with CDK1 can increase G2/M-phase transition, enhance cell proliferation and possibly activate the anti-tumor effects of p53 in a human adrenocortical carcinoma cell line. Moreover, assessment of GSEA has verified involvement of CENPF in the G2/M-phase cell cycle and p53 signaling [6].

Expression of CDK1 has also been found to be increased in bladder cancer cells, parallel with over-expression of the long non-coding RNA (lncRNA) PVT1. Notably, suppression of PVT1 has decreased activity, proliferative potential, colony formation, migratory capacity, and invasiveness of bladder cancer cells. miR-31 binding sites have been reported in both PVT1 and CDK1 transcripts. Taken together, PVT1-mediated reduction of miR-31 could increase expression of CDK1 in bladder cancer cells to enhance their proliferative potential, migration, and invasion [7]. Another study has shown the role of CDK1 in phosphorylation of TFCP2L1 at Thr177 in embryonic stem cells of mice as well as human bladder cancer cells. Notably, this type of phosphorylation has a crucial role in pluripotency and cell cycle progression of stem cells through modulation of expression of developmental genes. CDK1/TFCP2L1 axis is also involved in the induction of stemness characteristics and tumorigenic ability of bladder cancer cells [8]. Treatment of bladder cancer cells with the protein kinase D (PKD) inhibitor CRT0066101 has suppressed proliferation of these cells. CRT0066101 treatment or PKD2 silencing has induced cell cycle arrest at the G2/M phase, diminished expressions of cyclin B1, CDK1 and levels of CDK1 phosphorylated at Thr161, while increasing p27Kip1 and CDK1 phosphorylated at Thr14/Tyr15. This protein kinase inhibitor has also decreased expression of Cdc25C, which dephosphorylates and induces activity of CDK1, while enhancing function of Chk1, which suppresses CDK1 activity through phosphorylation and inactivation of Cdc25C. Moreover, CRT0066101 could elevate expression of a number of proteins that inhibit activity of the CDK1/cyclin B1 complex [9].

In breast cancer cells, the RNA binding protein KIAA1429 has been shown to interact with CDK1. Although this RNA binding protein is regarded as an N6-methyladenosine-associated regulatory protein, its oncogenic roles in breast cancer are exerted through regulation of CDK1 in an independent manner from its association with N6-methyladenosine (Fig. 1). Treatment of breast cancer cells with 5′-fluorouracil has efficiently reduced expressions of KIAA1429 and CDK1 [10]. Furthermore, siRNA-mediated silencing of CDK1 and CDC20 has significantly repressed cell migration and invasion of two breast cancer cell lines [11]. Another study has shown that knockdown of the ubiquitin-associated domain-containing gene UBAP2L in breast cancer cells suppresses their proliferation, impairs their colony formation aptitude and induces cell cycle arrest at G2/M phase. Most notably, this intervention has led to enhancement of p21 levels, while reducing levels of both CDK1 and Cyclin B1 [12].

Fig. 1
figure 1

A schematic diagram of CDK1 and the role of WTAP in modulating CDK2 in renal cell carcinoma. Mounting evidence has demonstrated the roles of N6-methyladenosine (m6A) in physiological processes and the progression of various human cancers such as cell cycle regulation that is mostly dependent on cyclins and CDKs. As a component in the m6A ‘writers’, WTAP is detected to be an RNA-binding protein and has a role in the m6A modification, mRNA splicing as well as processing. As an illustration, a recent study has detected that WTAP, an important component of the m6A writer complex, could have an oncogenic role in renal cell carcinoma tumorigenesis via physically binding to CDK2 transcript and promoting its transcript stability [68]

Cyclin B/CDK1 has been shown to phosphorylate inhibitor of apoptosis stimulating protein of P53 (iASPP), thus increasing nuclear localization of this protein and its inhibitory effects on p53. In Burkitt lymphoma cells, iASPP has been found to affect activity of transactivation domain p63 (TAp63). In fact, the interplay between CDK1 and iASPP can enhance the suppressive impact of iASPP on p53 and TAp63. Most notably, the tumor suppressor miR-129 has been shown to suppress expression of CDK1 and iASPP through binding with their transcripts. Moreover, CDK1 targeting by miR-129 can lead to inhibition of iASPP phosphorylation, therefore deterring nuclear localization of iASPP and its suppressive impact on p53 and TAp63 [13].

The oncogenic mutation HRASV12 has been found to induce activity of CDK1 and enhance protein O-GlcNAcylation, both of them having essential roles in induction of SOX2 expression and cancer stem cell properties in fibroblasts and cancer cell lines harboring RAS mutations. Most notably, the CDK inhibitor dinaciclib could reduce the quantities of cancer stem cells originated from these cells [14].

In colorectal cancer cells, knock-down of CDK1 has induced sensitivity to apoptosis. Moreover, CDK1 targeting with a MEK/ERK inhibitor has demonstrated effective impacts on proliferative abilities of these cells [15].

Notably, experiments in the vemurafenib-resistant colon cancer sublines have shown stable activation of CDK1, signifying the role of CDK1 activation in stimulation of resistance to vemurafenib. Adefovir dipivoxil that interrupts the interaction between CDK1 and KCTD12 and induces cell cycle arrest at G2 could inhibit colon cancer cells proliferation and induce sensitivity to vemurafenib [16]. Table 1 shows function of CDKs in cancer cell lines.

Table 1 Function of CDK1 based on cell line studies

Animal studies

In vivo assessments have shown that down-regulation of miR-31 enhances expression of CDK1 at transcript and protein levels. Down-regulation of PVT1 (an lncRNA which increases expression of CDK1) has led to lessening of bladder tumor size, decrease in the proliferation rate of tumor cells and reduction of CDK1 and Ki-67-expressing cells as demonstrated by immunohistochemistry [7]. In animal models of breast cancer, up-regulation of RBM7 which induces activity of CDK1 has been shown to increase tumor growth [19]. In colorectal cancer, high levels of miR-378a-5p reduces tumor burden through decreasing expression of CDK1 [24]. Moreover, disruption of the interaction between CDK1 and KCTD12 using Adefovir dipivoxil has been shown to reduce in vivo tumorigenesis of colon cancer cells and induce vemurafenib sensitivity in xenografts [16].

Most notably, in animal models of hepatocellular carcinoma, administration of a CDK1 inhibitor along with sorafenib has enhanced the effectiveness of sorafenib [37]. Moreover, in animal models of pancreatic cancer, reduction of phosphorylation of CDK1, 2, 7, and 9 by AT7519 has been associated with reduction of tumor growth [63]. Studies in animal models of other cancers have also verified that decrease in activity of CDKs consistently reduces tumor burden and induces sensitivity to available therapies (Table 2).

Table 2 Function of CDK1 in animal models of cancer

Investigations in clinical samples

The CDK1-interacting protein CENPF has been found to be over-expressed in human adrenocortical carcinoma samples in correlation with tumor stage and poor overall survival (OS). Further assessment of immune cells infiltration has shown that over-expression of CENPF is associated with different pattern of infiltration of immune cells and high TMB/MSI score. Based on the results of gene-drug interaction assessments inhibitors of this protein, such as Cisplatin, Sunitinib, and Etoposide, can be putative therapeutic modalities for adrenocortical carcinoma [6]. In clinical samples of bladder cancer, activity of the CDK1/TFCP2L1 axis has been found to be associated with aggressive characteristics of tumors including advanced tumor grade, lymphovascular/muscularis-propria invasion, metastatic ability and poor clinical outcomes [8].

Assessment of expression profiles of three breast cancer datasets has led to identification of hub genes that indicate poor prognosis. Further analyses have indicated enrichment of four up-regulated genes, namely CDK1, CDC20, AURKA, and MCM4 in oocyte meiosis and cell cycle pathways. Taken together, bioinformatics methods and experimental validation have suggested these genes as reliable markers for breast cancer [11]. In breast cancer, up-regulation of CDK1 has been associated with short overall, relapse-free and progression-free survival times as well as advanced clinical stage [69]. In patients with cholangiocarcinoma, up-regulation of CDK1 or PSMC2 (which regulates CDK1) has been associated with lymph node metastasis and advanced clinical stage [22] and tumor grade [23], respectively. Table 3 shows the association between dysregulation of CDKs in clinical samples and clinical characteristics.

Table 3 Dysregulation of CDK1 in clinical samples

Cyclin-dependent kinase 2 (CDK2)

Cell line studies

Inactivation of CDK2 has been shown to effectively overcome the differentiation arrest of acute myeloid leukemia (AML) cells. Treatment of AML cells with CDK2-targeted proteolysis-targeting chimeras (PROTACs) has resulted in prompt and effective degradation of CDK2 in various cell lines without similar destruction of other targets. Moreover, this therapeutic agent has induced significant differentiation of AML cells as well as primary patient cells [92]. Another study in AML cells has shown that CDK2 is the only interphase CDK that is degraded through a ubiquitin-dependent proteasomal system. This mode of degradation of CDK2 is associated differentiation of AML cells. KLHL6 has been shown to be the specific E3 ubiquitin ligase which regulates CDK2 degradation. Notably, suppression of CDK2, but not CDK1/4/6, could induce granulocytic differentiation in AML cell lines. From a mechanistical point of view, CDK2 depletion results in reactivation of translation of differentiation pathway. Moreover, the effect of CDK2 in induction of differentiation blockade is exerted through preserving the activity of PRDX2 [93]. Moreover, CDK2 has been shown to down-regulate expression of C/EBPα through ubiquitin-dependent proteasomal degradation system resulting in differentiation blockade in AML. Mechanistically, CDK2-induced C/EBPα down-regulation is facilitated by SKP2. In fact, CDK2 enhances stability of SKP2 through Ser64 phosphorylation leading to C/EBPα ubiquitination. Suppression of CDK2 results in down-regulation of SKP2 and up-regulation of C/EBPα in myeloid cells. Cumulatively, CDK2-SKP2 axis has been identified as a therapeutic target for AML [94]. Another study has shown that GSK8612-mediated TBK1 inhibition and si-TBK1 can regulate CDK2 expression in AML cells through AKT pathway. Suppression of activity of AKT can enhance sensitivity of AML cells to daunorubicin, endorsing the interaction between TBK1 and the AKT/CDK2 axis [95].

Treatment of bladder cancer cells with propofol could inhibit their proliferation and enhance cell apoptosis through regulation of CDK2 expression. Mechanistically, propofol up-regulates expression of a CDK2-targeting miRNA, namely miR-340. Suppression of miR-340 has reversed the impacts of propofol on proliferation and apoptosis of bladder cancer cells. Moreover, suppression of CDK2 can partly reverse the impacts of miR-340 inhibition on proliferation and apoptosis of propofol-treated bladder cancer cells [96].

The Cdk4/6 inhibitor palbociclib has been shown to exert antitumor effects against bladder cancer cells through modification of Cdk2. Palbociclib has been shown to induce apoptosis of bladder cancer cells rather than cell cycle arrest. Activation Cdk2 has an indispensable role in palbociclib-induced apoptosis, as depletion of Cdk2 has suppressed caspase-3 activation and apoptosis. Activation Cdk2 has been shown to induce p-Rad9 mitochondrial translocation and its interaction with Bcl-xl, resulting in Bak activation and induction of apoptosis [97].

In breast cancer cells, concurrent administartion of CDK2 and CDK4/6 inhibitiors could reverse palbociclib resistance through increasing cell senescence [98]. Another functional study has shown that CDK2-mediated phosphorylation of EZH2 induces and preserves proliferation of triple-negative breast cancer cells [99]. Table 4 summarizes function of CDK2 in different cancer cell lines. Figure 2 illustrates the interaction between STAT3 signaling pathway and CDK1 and CDK2 in lung cancer (Fig. 3).

Table 4 Function of CDK2 based on cell line studies
Fig. 2
figure 2

A schematic illustration of the role of STAT3 signaling cascade in regulating CDK1 and CDK2 in lung cancer. Accumulating evidence has illustrated that CDK1/GP130/STAT3 signaling could promote lung cancer tumorigenesis. It has been reported that Iron-dependent CDK1 activity could phosphorylate 4E-BP1, which in turn elevates STAT3 signaling pathway via upregulation of GP130 [48]. Moreover, another research has revealed that PROS could downregulate VEGF induced proliferation, migration, and tube formation in non-small lung cancer cells and inhibits angiogenesis in chorioallantoic membrane assay through attenuating phosphorylation of VEGFR2, Src, and STAT3, thereby inducing sub G1 accumulation, S phase arrest [158]

Fig. 3
figure 3

A schematic representation of the role of PI3K/AKT/mTOR and MAPK/ERK signaling pathways in regulating the expression of CDK2 and CDK4/6 in various human cancers

Recent study has detected that upregulation of PTEN and Rb expression levels could lead to promoting sensitivity to CDK4/6 inhibitors, which could in turn result in reducing the expression of AKT and PI3K in ER-Positive Breast Cancer. Whereas, acquired loss of Rb and PTEN expression could induce resistance to CDK4/6 inhibitors in patients, and thereby promoting hyperactivation of CDK2 and CDK4 [172]. Moreover, other finding points out that IGF1R overexpression, as an escape mechanism, could elevate resistance to CDK4/6 inhibitors in Ewing sarcoma. Therefore, dual targeting of CDK4/6 and IGF1R could play an effective role in providing a candidate synergistic combination for clinical application in this disease and promoting inhibition of the cell cycle as well as PI3K/mTOR axis in tumor cells [173]. In addition, a recent clinical study has revealed that suppression of CDK4/6 phosphorylation and the complex with cyclin D as well as downregulating PI3K/AKT/mTOR signaling cascade could remarkably reduce cell viability, induce apoptosis, and promote the percentage of cells in G1 phase in hepatocellular carcinoma [174]. All the information regarding the role of these cascades involved in the regulation of CDK2 and CDK4/6 expression in various types of human cancers can be seen in Tables 4 and 10.

Animal studies

Depletion of CDK2 has led to blockade of AML cells growth in animal models and increased survival of xenograft mice models [93]. Another study in animal models of AML has shown that concomitant administration of chidamide and doxorubicin could inhibit HDAC3-AKT-P21-CDK2 signaling and reduce tumor growth [101].

Another experiment in an animal model of bladder cancer has shown the anticancer role of Cdk2 activation in palbociclib-treated animals, indicating that the anticancer effect of palbociclib is exerted via Cdk2 activation [97]. In xenogaft models of breast cancer, depletion of CDK2 and CDK4/6 has reduced tumor growth and palbociclib resistance [98]. Similar results have been reported in animal models of other types of cancers (Table 5).

Table 5 Function of CDK2 in animal models of cancer

Investigations in clinical samples

Up-regulation of CDK2 has been reported in diverse types of cancers. In AML, up-regulation of HDAC3-AKT-P21-CDK2 signaling has been associated with shorter event-free and overall survival (OS) times [101]. In bladder cancer, expression of CDK2 has been increased, while expression of a CDK2-targeting miRNA, namely miR-3619 has been decreased. These observations have been associated with advanced tumor stage and grade [105]. In breast cancer, up-regulation of MTHFD2, which contributes in the cell cycle through binding to CDK2, has been associated with shorter OS, tumor grade and stage [107]. Other studies have shown up-regulation of a number of CDK2-interactiong circRNAs such as hsa_circ_0000520 [128], circ_0084927 [129] and circZFR [130] in cervical cancer patients. Notably, up-regulation of circZFR has been associated with lymphatic metastasis in this type of cancer [130]. Several other studies have found association between dysregulation of CDK2 or its interacting partners and clinical data of patients (Table 6).

Table 6 Dysregulation of CDK2 in clinical samples

Cyclin-dependent kinase 3 (CDK3)

Cell line studies

CDK3 has been shown to participate in regulation of cell cycle transition at G0/G1 and G1/S phases. Up-regulation of CDK3 in breast cancer cells has suppressed their migration and invasion. Further experiments in these cells have identified miR-4469 as a CDK3-targeting miRNA. Consistent with this finding, miR-4469-induced enhancement of cell motility could be obliterated by CDK3 up-regulation. Assessments of RNA-seq data and western blot assay have indicated inhibition of Wnt pathway by CDK3 expression. Besides, Wnt3a treatment could abolish the inhibitory effect of CDK3 in cell motility, indicating the role of CDK3 as an upstream regulator of Wnt signaling in these cells [181].

CDK3 has also been reported to participate in ERα signaling and resistance to tamoxifen. The anti-cancer agent norcantharidin (NCTD) has been found to regulate miR-873/CDK3 axis. Treatment of breast cancer cells with NCTD has led to reduction of transcriptional activity of ERα but not ERβ via influencing activity of miR-873/CDK3 axis. Moreover, NCTD has been shown to inhibit proliferation of breast cancer cells and induce sensitivity to tamoxifen via this axis. Mechanistically, NCTD blocks tamoxifen induced transcriptional activity and ERα downstream gene expression. Moreover, it reestablishes tamoxifen induced recruitment of ERα co-repressors [182]. The CDK3 targeting miRNA, miR‐125a‐3p has also been revealed to inhibit transactivation of ERα and prevail tamoxifen resistance in ER + breast cancer cells [183]. Similarly, miR-873 has been found to regulate transcriptional activity of ERα and resistance to tamoxifen through influencing expression of CDK3 in breast cancer cells [184].

In colorectal cancer cells, Cdk3 has been shown to promote epithelial-mesenchymal transition (EMT) via enhancing activity of AP-1 [185]. Another study in esophageal squamous cell carcinoma cells has shown that the oncogenic circular RNA circRNA_141539 exerts its function through sponging miR-4469 and enhancing activity of CDK3 [186]. Table 7 shows the function of CDK3 based on cell line studies.

Table 7 Function of CDK3 based on cell line studies

Animal studies

While a single study in breast cancer models has shown that up-regulation of CDK3 decreases metastatic abilities of breast cancer cells [181], other studies have shown that up-regulation of CDK3-targeting miRNAs miR-125a-3p [183] and miR-873 [184] leads to reduction of tumor growth. In xenograft models of colorectal cancer, up-regulation of CDK3 has been accompanied by enhancement of metastatic ability of cancer cells [185]. Table 8 summarizes function of CDK3 in animal models of cancer.

Table 8 Function of CDK3 in animal models of cancer

Investigations in clinical samples

Expression assays in breast cancer samples have shown that up-regulation of CDK3 is associated with chemoresistance [187]. In colorectal cancer samples, up-regulation of this member of CDK family has been associated with shorter progression-free survival and advanced TMN stage [186]. In clinical samples of nasopharyngeal carcinoma, up-regulation of CDK3 has been associated with tumor infiltration, lymph node metastasis and TNM staging [192]. Table 9 summarizes results of studies that reported association between up-regulation of CDK3 and clinical parameters.

Table 9 Dysregulation of CDK3 in clinical samples

Cyclin-dependent kinase 4/6 (CDK4/6)

Cell line studies

An in vitro study in AML has verified that suppression of CDK4/6 and autophagy enhances apoptosis in t(8; 21) AML cells in a synergic manner [194]. Similarly, CDK4/6 inhibition is a novel therapeutic modality for bladder cancer irrespective of RB1 status [195]. This treatment has reduced FOXM1 phosphorylation and exhibited synergy with cisplatin [195]. Another in vitro study in breast cancer cells has reported loss of the FAT1 as a mechanism for induction of resistance to CDK4/6 inhibitors. Mechanistically, FAT1 silencing has led to suppression of Hippo pathway in ER + cancer cells [196]. Single-cell assessment of CDK2 activity has confirmed difference in cell-cycle regulation between the luminal androgen receptor (LAR) subtype of triple negative breast cancer (TNBC) and basal-like cells. In fact, palbociclib-sensitive LAR cells leave mitotic cycle with low level of CDK2 activity, and enter a quiescent phase that needs activity of CDK4/6 for going back into cell-cycle. On the other hand, palbociclib-resistant basal-like cells leave mitosis and directly enter into a proliferative phase characterized by high level of CDK2 activity, circumventing the constraint point and the need for CDK4/6 activity. CDK4/6 inhibition has synergism with PI3 kinase inhibition in reduction of proliferation of PIK3CA-mutant TNBC cells, indicating that other subtypes of TNBC can be responsive to CDK4/6 inhibitors [197]. In breast and other solid tumors, CDK4/6 inhibitors could trigger anti-tumour immune responses [198]. Moreover, experiments in cervical cancer cells have shown that cyclin D-CDK4/6 inhibition enhances sensitivity of immune-refractory cancers through hindering the SCP3–NANOG axis [199]. Table 10 summarizes function of CDK4/6 based on cell line studies.

Table 10 Function of CDK4/6 based on cell line studies

Animal studies

Experiments in animal models of AML have verified that CDK4/6 inhibition enhances autophagy. Moreover, concurrent administration CDK4/6 inhibitor and autophagy inhibitor has reduced tumor growth in these models [333]. Similarly, combination of cisplatin and CDK4/6 inhibitors has significantly reduced bladder cancer growth [195]. In xenograft models of breast cancer, CDK4/6 inhibitors could reduce proliferation, and enhance anti-tumor immune responses [198]. In addition, in this type of cancer, combined inhibition of CDK2 and CDK4/6 has enhaced sensitivity to palbociclib [98]. Besides, combination of CDK4/6 inhibitor, abemaciclib, with c-Met/Trk inhibitor, altiratinib has been shown to be effective against glioma-initiating cells [256]. Table 11 shows function of CDK4/6 in animal models of cancer.

Table 11 Function of CDK4/6 in animal models of cancer

Investigations in clinical samples

Investigations in breast cancer samples have shown up-regulation of CDK4/6 in different subtypes. For instance, CDK6 levels have been found to be higher in FAT1-deleted samples compared with those having wildtype FAT1 [196]. Another study has shown up-regulation of CDK4/6 and pRb levels in HER2 + breast cancer samples [334]. In ovarian cancer samples, up-regulation of CDK6 has been associated with shorted OS and immunosuppressive state [319]. Moreover, in this type of cancer, up-regulation of a functional counterpart of CDK4/6, i.e. COL6A3 has been associated with shorter OS and advanced clinical stage [330]. Table 12 shows dysregulation of CDK4/6 in clinical samples.

Table 12 Dysregulation of CDK4/6 in clinical samples

A number of clinical studies have evaluated the effects of CDK4/6 inhibition on survival of patients (Table 13). For instance, treatment of 22 breast cancer patients with a CDK4/6 inhibitor has resulted in complete response in one patient, partial response in 8 patients, and stable disease in 13 patients [336]. Another study in breast cancer patients has indicated better progression-free survival time in those treated with CDK4/6 inhibitors than those received PI3K inhibitors. Moreover, Combination of CDK4/6 inhibitors and endocrine therapy has yielded better OS than PI3K/mTOR inhibitors [337]. Promising results have also obtained from studies in other types of cancers.

Table 13 Effects of CDK4/6 inhibitors or other therapeutic agents in clinical settings

Discussion

Expression and activity of CDKs have been assessed in animal models of cancers, cell lines and clinical samples of patients having different types of cancers. CDK1 and CDK2 are the most comprehensively assessed members of this family. Additionally, a number of studies have addressed involvement of CDKs 3, 4/6, 5, 7 and 9 in cancer cell lines. Other members of this protein family have not been thoroughly assessed.

The above-mentioned studies have revealed a number of CDKs-interacting molecules including mRNA coding genes as well as lncRNAs and miRNAs. PVT1, NCK1-AS1, FOXD2-AS1, SNHG4, SNORD52, TMPO-AS1, TONSL-AS1, DLEU1 and CASC11 are among lncRNAs that interact with CDKs. Meanwhile, miR-378a-5p, miR-34c-3p, miR-181a, miR-195-3p and miR-205 have been shown to regulate expression of certain CDKs through binding with the 3'UTR of their transcripts. Since miRNAs can efficiently reduce expression of CDKs, identification of additional CDKs-targeting miRNAs through in silico and experimental methods can facilitate design of novel treatment modalities for cancers. Moreover, available data indicate that expressions of CDKs are regulated through a complex regulatory network consisted of both genetic and epigenetic mechanisms which can be dysregulated during the course of cancer evolution. Application of various quantitative experimental and computational methods in a "system biology" approach is needed to unravel complicated aspects of the mentioned network and develop novel modalities to combat cancer-a prototype of disorders associated with dysregulation of CDKs.

Conclusion

Since activity of CDKs is associated with induction of stem cell properties, drugs targeting these proteins might be used for effective elimination of cancer stem cells and reduction of tumor metastases. This implicates that CDKs are involved in the pathogenesis of a high spectrum of cancers, including different types of carcinomas as well as non-epithelial malignancies. Coming from this point of view CDKs will come more and more in the focus as therapeutical targets.

Activity levels of CDKs can be used for prediction of cancer prognosis and response of patients to various therapeutic options. In fact, an appropriate approach for implementation of personalized medicine in the field of cancer therapy is measurement of activity of these proteins.

Cumulatively, CDKs represent ideal therapeutic targets for cancer. Thus, future studies should focus on assessment of their activities in different tumors and identification of their association with clinicopathological data. Moreover, the presence of putative genetic variants within CDK coding genes might affect their activity and susceptibility of persons to different cancers. This note should also be assessed in future studies.

Availability of data and materials

The analyzed data sets generated during the study are available from the corresponding author on reasonable request.

References

  1. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079–93.

    Article  CAS  PubMed  Google Scholar 

  2. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14(2):130–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, et al. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci. 2020;21(6):1960.

    Article  CAS  PubMed Central  Google Scholar 

  4. García-Reyes B, Kretz A-L, Ruff J-P, von Karstedt S, Hillenbrand A, Knippschild U, et al. The emerging role of cyclin-dependent kinases (CDKs) in pancreatic ductal adenocarcinoma. Int J Mol Sci. 2018;19(10):3219.

    Article  PubMed Central  Google Scholar 

  5. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang Y, Li D, Wang L, Su X, Tang X-B. CENPF/CDK1 signaling pathway enhances the progression of adrenocortical carcinoma by regulating the G2/M-phase cell cycle. J Transl Med. 2021;20(1):1–17.

    Google Scholar 

  7. Tian Z, Cao S, Li C, Xu M, Wei H, Yang H, et al. LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/CDK1. J Cell Physiol. 2019;234(4):4799–811.

    Article  CAS  PubMed  Google Scholar 

  8. Heo J, Noh BJ, Lee S, Lee HY, Kim Y, Lim J, et al. Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. EMBO Mol Med. 2020;12(1): e10880.

    Article  CAS  PubMed  Google Scholar 

  9. Li QQ, Hsu I, Sanford T, Railkar R, Balaji N, Sourbier C, et al. Protein kinase D inhibitor CRT0066101 suppresses bladder cancer growth in vitro and xenografts via blockade of the cell cycle at G2/M. Cell Mol Life Sci. 2018;75(5):939–63.

    Article  CAS  PubMed  Google Scholar 

  10. Qian J-Y, Gao J, Sun X, Cao M-D, Shi L, Xia T-S, et al. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene. 2019;38(33):6123–41.

    Article  CAS  PubMed  Google Scholar 

  11. Wang N, Zhang H, Li D, Jiang C, Zhao H, Teng Y. Identification of novel biomarkers in breast cancer via integrated bioinformatics analysis and experimental validation. Bioengineered. 2021;12(2):12431–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He J, Chen Y, Cai L, Li Z, Guo X. UBAP2L silencing inhibits cell proliferation and G2/M phase transition in breast cancer. Breast Cancer. 2018;25(2):224–32.

    Article  PubMed  Google Scholar 

  13. Zou H, Zou R, Chen K, Zhu C, Tian X, You Y, et al. miR-129 targets CDK1 and iASPP to modulate Burkitt lymphoma cell proliferation in a TAp63-dependent manner. J Cell Biochem. 2018;119(11):9217–28.

    Article  CAS  PubMed  Google Scholar 

  14. Shimizu M, Shibuya H, Tanaka N. Enhanced O-GlcNAc modification induced by the RAS/MAPK/CDK1 pathway is required for SOX2 protein expression and generation of cancer stem cells. Sci Rep. 2022;12(1):1–13.

    Article  Google Scholar 

  15. Zhang P, Kawakami H, Liu W, Zeng X, Strebhardt K, Tao K, et al. Targeting CDK1 and MEK/ERK overcomes apoptotic resistance in BRAF-mutant human colorectal cancer. Mol Cancer Res. 2018;16(3):378–89.

    Article  CAS  PubMed  Google Scholar 

  16. Yang J, Xu WW, Hong P, Ye F, Huang X-H, Hu H-F, et al. Adefovir dipivoxil sensitizes colon cancer cells to vemurafenib by disrupting the KCTD12-CDK1 interaction. Cancer Lett. 2019;451:79–91.

    Article  CAS  PubMed  Google Scholar 

  17. Xie D, Song H, Wu T, Li D, Hua K, Xu H, et al. MicroRNA-424 serves an anti-oncogenic role by targeting cyclin-dependent kinase 1 in breast cancer cells. Oncol Rep. 2018;40(6):3416–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Pan Y, Fu H, Zhang J. Nucleolar and spindle associated protein 1 (NUSAP1) inhibits cell proliferation and enhances susceptibility to epirubicin in invasive breast cancer cells by regulating cyclin D kinase (CDK1) and DLGAP5 expression. Med Sci Monit Int Med J Exp Clin Res. 2018;24:8553.

    CAS  Google Scholar 

  19. Xi P-W, Zhang X, Zhu L, Dai X-Y, Cheng L, Hu Y, et al. Oncogenic action of the exosome cofactor RBM7 by stabilization of CDK1 mRNA in breast cancer. NPJ Breast Cancer. 2020;6(1):1–10.

    Article  Google Scholar 

  20. Tang J, Pan H, Wang W, Qi C, Gu C, Shang A, et al. MiR-495-3p and miR-143-3p co-target CDK1 to inhibit the development of cervical cancer. Clin Transl Oncol. 2021;23(11):2323–34.

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Jia Y, Cheng J, Liu G, Song F. LncRNA NCK1-AS1 promotes proliferation and induces cell cycle progression by crosstalk NCK1-AS1/miR-6857/CDK1 pathway. Cell Death Dis. 2018;9(2):1–15.

    Article  Google Scholar 

  22. Yamamura M, Sato Y, Takahashi K, Sasaki M, Harada K. The cyclin-dependent kinase pathway involving CDK1 is a potential therapeutic target for cholangiocarcinoma. Oncol Rep. 2020;43(1):306–17.

    CAS  PubMed  Google Scholar 

  23. Duan X, Yang J, Jiang B, Duan W, Wei R, Zhang H, et al. Knockdown of PSMC2 contributes to suppression of cholangiocarcinoma development by regulating CDK1. Aging (Albany NY). 2021;13(17):21325.

    Article  CAS  Google Scholar 

  24. Zhou N, Li S, Wu D, Zhang F, Tang F, Li Y. The lncRNA VPS9D1-AS1 promotes hepatocellular carcinoma cell cycle progression by regulating the HuR/CDK4 axis. DNA Cell Biol. 2021;40(10):1278–89.

    Article  CAS  PubMed  Google Scholar 

  25. Tong Y, Huang Y, Zhang Y, Zeng X, Yan M, Xia Z, et al. DPP3/CDK1 contributes to the progression of colorectal cancer through regulating cell proliferation, cell apoptosis, and cell migration. Cell Death Dis. 2021;12(6):1–12.

    Article  Google Scholar 

  26. Zhou Z, Tan F, Pei Q, Li C, Zhou Y, Li Y, et al. lncRNA SNHG4 modulates colorectal cancer cell cycle and cell proliferation through regulating miR-590-3p/CDK1 axis. Aging (Albany NY). 2021;13(7):9838.

    Article  CAS  Google Scholar 

  27. Bury M, Le Calve B, Lessard F, Dal Maso T, Saliba J, Michiels C, et al. NFE2L3 controls colon cancer cell growth through regulation of DUX4, a CDK1 inhibitor. Cell Rep. 2019;29(6):1469-81.e9.

    Article  CAS  PubMed  Google Scholar 

  28. Zeng Q, Lei F, Chang Y, Gao Z, Wang Y, Gao Q, et al. An oncogenic gene, SNRPA1, regulates PIK3R1, VEGFC, MKI67, CDK1 and other genes in colorectal cancer. Biomed Pharmacother. 2019;117: 109076.

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Qu Y, Li Y. Over-expression of miR-1271 inhibits endometrial cancer cells proliferation and induces cell apoptosis by targeting CDK1. Eur Rev Med Pharmacol Sci. 2017;21(12):2816–22.

    CAS  PubMed  Google Scholar 

  30. Bi L, Wang H, Tian Y. Silencing FAM135B enhances radiosensitivity of esophageal carcinoma cell. Gene. 2021;772: 145358.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu Y, Xing Y, Chi F, Sun W, Zhang Z, Piao D. Long noncoding RNA SNHG6 promotes the progression of colorectal cancer through sponging miR-760 and activation of FOXC1. Onco Targets Ther. 2018;11:5743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li F-N, Zhang Q-Y, Li O, Liu S-L, Yang Z-Y, Pan L-J, et al. ESRRA promotes gastric cancer development by regulating the CDC25C/CDK1/CyclinB1 pathway via DSN1. Int J Biol Sci. 2021;17(8):1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang Z, Zhang S, Du J, Zhang X, Zhang W, Huang Z, et al. Cyclin-Dependent kinase 1 (CDK1) is co-expressed with CDCA5: their functions in gastric cancer cell line MGC-803. Med Sci Monit Int Med J Exp Clin Res. 2020;26:e923664–71.

    CAS  Google Scholar 

  34. Shi Q, Ni X, Lei M, Xia Q, Dong Y, Zhang Q, et al. Phosphorylation of islet-1 serine 269 by CDK1 increases its transcriptional activity and promotes cell proliferation in gastric cancer. Mol Med. 2021;27(1):1–11.

    Article  Google Scholar 

  35. Voce DJ, Bernal GM, Cahill KE, Wu L, Mansour N, Crawley CD, et al. CDK1 is up-regulated by temozolomide in an NF-κB dependent manner in glioblastoma. Sci Rep. 2021;11(1):1–10.

    Article  Google Scholar 

  36. Wang J, Li B, Wang C, Luo Y, Zhao M, Chen P. Long noncoding RNA FOXD2-AS1 promotes glioma cell cycle progression and proliferation through the FOXD2-AS1/miR-31/CDK1 pathway. J Cell Biochem. 2019;120(12):19784–95.

    Article  CAS  PubMed  Google Scholar 

  37. Wu CX, Wang XQ, Chok SH, Man K, Tsang SHY, Chan ACY, et al. Blocking CDK1/PDK1/β-Catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma. Theranostics. 2018;8(14):3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dang X-W, Pan Q, Lin Z-H, Wang H-H, Li L-H, Li L, et al. Overexpressed DEPDC1B contributes to the progression of hepatocellular carcinoma by CDK1. Aging (Albany NY). 2021;13(16):20094.

    Article  CAS  Google Scholar 

  39. Liu H-M, Tan H-Y, Lin Y, Xu B-N, Zhao W-H, Xie Y-A. MicroRNA-1271-5p inhibits cell proliferation and enhances radiosensitivity by targeting CDK1 in hepatocellular carcinoma. J Biochem. 2020;167(5):513–24.

    Article  CAS  PubMed  Google Scholar 

  40. Li L, Huang K, Zhao H, Chen B, Ye Q, Yue J. CDK1-PLK1/SGOL2/ANLN pathway mediating abnormal cell division in cell cycle may be a critical process in hepatocellular carcinoma. Cell Cycle. 2020;19(10):1236–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li C, Wu L, Liu P, Li K, Zhang Z, He Y, et al. The C/D box small nucleolar RNA SNORD52 regulated by Upf1 facilitates Hepatocarcinogenesis by stabilizing CDK1. Theranostics. 2020;10(20):9348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang C, Li M-Y, Shen X-H, Wang S-J, Wang W-Q, Liu Y-F. Effect of CDK1 interferes with the regulation of PLK1, Aurora B and TRF1 on the proliferation of leukemia cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2021;29(4):1129–35.

    PubMed  Google Scholar 

  43. Huang Z, Shen G, Gao J. CDK1 promotes the stemness of lung cancer cells through interacting with Sox2. Clin Transl Oncol. 2021;23(9):1743–51.

    Article  CAS  PubMed  Google Scholar 

  44. Tong W, Han T, Wang W, Zhao J. LncRNA CASC11 promotes the development of lung cancer through targeting microRNA-302/CDK1 axis. Eur Rev Med Pharmacol Sci. 2019;23(15):6539–47.

    CAS  PubMed  Google Scholar 

  45. Palma F, Affinito A, Nuzzo S, Roscigno G, Scognamiglio I, Ingenito F, et al. miR-34c-3p targets CDK1 a synthetic lethality partner of KRAS in non-small cell lung cancer. Cancer Gene Ther. 2021;28(5):413–26.

    Article  CAS  PubMed  Google Scholar 

  46. Zha L, Zhang L, Pan H, Ma H. Upregulation of lncRNA NCK1-AS1 predicts poor prognosis and contributes to non-small cell lung cancer proliferation by regulating CDK1. Eur Rev Med Pharmacol Sci. 2021;25(3):1351–7.

    PubMed  Google Scholar 

  47. Li L, Zhang Z, Yang Q, Ning M. Lycorine inhibited the cell growth of non-small cell lung cancer by modulating the miR-186/CDK1 axis. Life Sci. 2019;231: 116528.

    Article  CAS  PubMed  Google Scholar 

  48. Kuang Y, Guo W, Ling J, Xu D, Liao Y, Zhao H, et al. Iron-dependent CDK1 activity promotes lung carcinogenesis via activation of the GP130/STAT3 signaling pathway. Cell Death Dis. 2019;10(4):1–12.

    Article  Google Scholar 

  49. Li Q, Bian Y, Li Q. Down-regulation of TMPO-AS1 induces apoptosis in lung carcinoma cells by regulating miR-143-3p/CDK1 axis. Technol Cancer Res Treat. 2021;20:1533033820948880.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi Q, Zhou Z, Ye N, Chen Q, Zheng X, Fang M. MiR-181a inhibits non-small cell lung cancer cell proliferation by targeting CDK1. Cancer Biomark. 2017;20(4):539–46.

    Article  CAS  PubMed  Google Scholar 

  51. Hossian A, Mackenzie GG, Mattheolabakis G. Combination of miR-143 and miR-506 reduces lung and pancreatic cancer cell growth through the downregulation of cyclin-dependent kinases. Oncol Rep. 2021;45(4):1.

    Article  Google Scholar 

  52. Hossian A, Sajib M, Tullar PE, Mikelis CM, Mattheolabakis G. Multipronged activity of combinatorial miR-143 and miR-506 inhibits lung cancer cell cycle progression and angiogenesis in vitro. Sci Rep. 2018;8(1):1–14.

    Article  CAS  Google Scholar 

  53. Menon DR, Luo Y, Arcaroli JJ, Liu S, KrishnanKutty LN, Osborne DG, et al. CDK1 interacts with Sox2 and promotes tumor initiation in human melanoma. Can Res. 2018;78(23):6561–74.

    Article  CAS  Google Scholar 

  54. Sun W, Zhao F, Xu Y, Huang K, Guo X, Zheng B, et al. Chondroitin polymerizing factor (CHPF) promotes development of malignant melanoma through regulation of CDK1. Cell Death Dis. 2020;11(7):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yang Y, Dai Y, Yang X, Wu S, Wang Y. DNMT3A mutation-induced CDK1 overexpression promotes leukemogenesis by modulating the interaction between EZH2 and DNMT3A. Biomolecules. 2021;11(6):781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu L, Pan X, Hu J, Zeng H, Liu X, Jiang M, et al. Proteasome inhibitors decrease paclitaxel-induced cell death in nasopharyngeal carcinoma with the accumulation of CDK1/cyclin B1. Int J Mol Med. 2021;48(4):1–11.

    Article  Google Scholar 

  57. Wang J, Chang L, Lai X, Li X, Wang Z, Huang Z, et al. Tetrandrine enhances radiosensitivity through the CDC25C/CDK1/cyclin B1 pathway in nasopharyngeal carcinoma cells. Cell Cycle. 2018;17(6):671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xie F, Xiao W, Tian Y, Lan Y, Zhang C, Bai L. MicroRNA-195-3p inhibits cyclin dependent kinase 1 to induce radiosensitivity in nasopharyngeal carcinoma. Bioengineered. 2021;12(1):7325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li J, Zhi X, Shen X, Chen C, Yuan L, Dong X, et al. Depletion of UBE2C reduces ovarian cancer malignancy and reverses cisplatin resistance via downregulating CDK1. Biochem Biophys Res Commun. 2020;523(2):434–40.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang R, Shi H, Ren F, Zhang M, Ji P, Wang W, et al. The aberrant upstream pathway regulations of CDK1 protein were implicated in the proliferation and apoptosis of ovarian cancer cells. J Ovarian Res. 2017;10(1):1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhou L, Liu R, Liang X, Zhang S, Bi W, Yang M, et al. lncRNA RP11–624L4. 1 is associated with unfavorable prognosis and promotes proliferation via the CDK4/6-cyclin D1-Rb-E2F1 pathway in NPC. Mol Ther Nucleic Acids. 2020;22:1025–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang LL, Sun KX, Wu DD, Xiu YL, Chen X, Chen S, et al. DLEU 1 contributes to ovarian carcinoma tumourigenesis and development by interacting with miR-490-3p and altering CDK 1 expression. J Cell Mol Med. 2017;21(11):3055–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kazi A, Chen L, Xiang S, Vangipurapu R, Yang H, Beato F, et al. Global phosphoproteomics reveal CDK suppression as a vulnerability to KRas addiction in pancreatic cancer. Clin Cancer Res. 2021;27(14):4012–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pecoraro C, Parrino B, Cascioferro S, Puerta A, Avan A, Peters GJ, et al. A new oxadiazole-based topsentin derivative modulates cyclin-dependent kinase 1 expression and exerts cytotoxic effects on pancreatic cancer cells. Molecules. 2021;27(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Huang J, Chen P, Liu K, Liu J, Zhou B, Wu R, et al. CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer. Gut. 2021;70(5):890–9.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang B, Zhang M, Li Q, Yang Y, Shang Z, Luo J. TPX2 mediates prostate cancer epithelial-mesenchymal transition through CDK1 regulated phosphorylation of ERK/GSK3β/SNAIL pathway. Biochem Biophys Res Commun. 2021;546:1–6.

    Article  CAS  PubMed  Google Scholar 

  67. Ji G, He S, Huang C, Gong Y, Li X, Zhou L. Upregulation of ATP binding cassette subfamily C member 5 facilitates prostate cancer progression and enzalutamide resistance via the CDK1-mediated AR Ser81 phosphorylation pathway. Int J Biol Sci. 2021;17(7):1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang J, Wang F, Cheng G, Si S, Sun X, Han J, et al. Wilms’ tumor 1-associating protein promotes renal cell carcinoma proliferation by regulating CDK2 mRNA stability. J Exp Clin Cancer Res. 2018;37(1):1–12.

    Article  Google Scholar 

  69. Xing Z, Wang X, Liu J, Zhang M, Feng K, Wang X. Expression and prognostic value of CDK1, CCNA2, and CCNB1 gene clusters in human breast cancer. J Int Med Res. 2021;49(4):0300060520980647.

    CAS  PubMed Central  Google Scholar 

  70. Peng X, Wang J, Li D, Chen X, Liu K, Zhang C, et al. Identification of grade-related genes and construction of a robust genomic-clinicopathologic nomogram for predicting recurrence of bladder cancer. Medicine. 2020;99(47):e23179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu Z, Liang G, Tan L, Su A, Jiang W, Gong C. High-efficient screening method for identification of key genes in breast cancer through microarray and bioinformatics. Anticancer Res. 2017;37(8):4329–35.

    CAS  PubMed  Google Scholar 

  72. Li J, Wang Y, Wang X, Yang Q. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: evidence from integrated bioinformatics analysis. World J Surg Oncol. 2020;18(1):1–11.

    Article  CAS  Google Scholar 

  73. Yun Z-J, Wang H-J, Yu Y-X, Sun Z-Y, Yao S-K. Screening of differentially expressed genes for colorectal cancer and prediction of potential traditional Chinese medicine: based on bioinformatics. Zhongguo Zhong yao za zhi Zhongguo Zhongyao Zazhi China J Chin Mater Med. 2022;47(6):1666–76.

    Google Scholar 

  74. Zhang HJ, Chen G, Chen SW, Fu ZW, Zhou HF, Feng ZB, et al. Overexpression of cyclin-dependent kinase 1 in esophageal squamous cell carcinoma and its clinical significance. FEBS Open Bio. 2021;11(11):3126–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang L, Kang W, Lu X, Ma S, Dong L, Zou B. LncRNA CASC11 promoted gastric cancer cell proliferation, migration and invasion in vitro by regulating cell cycle pathway. Cell Cycle. 2018;17(15):1886–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zou Y, Ruan S, Jin L, Chen Z, Han H, Zhang Y, et al. CDK1, CCNB1, and CCNB2 are prognostic biomarkers and correlated with immune infiltration in hepatocellular carcinoma. Med Sci Monit Int Med J Exp Clin Res. 2020;26:e925289–91.

    CAS  Google Scholar 

  77. Zhou Z, Li Y, Hao H, Wang Y, Zhou Z, Wang Z, et al. Screening hub genes as prognostic biomarkers of hepatocellular carcinoma by bioinformatics analysis. Cell Transplant. 2019;28(1_suppl):76S-86S.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li Y, Wu D, Wei C, Yang X, Zhou S. CDK1, CCNB1 and NDC80 are associated with prognosis and progression of hepatitis B virus-associated hepatocellular carcinoma: a bioinformatic analysis. Nan fang yi ke da xue xue bao J South Med Univ. 2021;41(10):1509–18.

    CAS  Google Scholar 

  79. Liu J, Han F, Ding J, Liang X, Liu J, Huang D, et al. Identification of multiple hub genes and pathways in hepatocellular carcinoma: a bioinformatics analysis. BioMed Res Int. 2021;2021.

  80. Ni W, Zhang S, Jiang B, Ni R, Xiao M, Lu C, et al. Identification of cancer-related gene network in hepatocellular carcinoma by combined bioinformatic approach and experimental validation. Pathol Res Pract. 2019;215(6): 152428.

    Article  CAS  PubMed  Google Scholar 

  81. Lei X, Zhang M, Guan B, Chen Q, Dong Z, Wang C. Identification of hub genes associated with prognosis, diagnosis, immune infiltration and therapeutic drug in liver cancer by integrated analysis. Hum Genom. 2021;15(1):1–21.

    Article  Google Scholar 

  82. Li M, He F, Zhang Z, Xiang Z, Hu D. CDK1 serves as a potential prognostic biomarker and target for lung cancer. J Int Med Res. 2020;48(2):0300060519897508.

    Article  CAS  PubMed Central  Google Scholar 

  83. Li S, Li H, Cao Y, Geng H, Ren F, Li K, et al. Integrated bioinformatics analysis reveals CDK1 and PLK1 as potential therapeutic targets of lung adenocarcinoma. Medicine. 2021;100(32):e26474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu W-T, Wang Y, Zhang J, Ye F, Huang X-H, Li B, et al. A novel strategy of integrated microarray analysis identifies CENPA, CDK1 and CDC20 as a cluster of diagnostic biomarkers in lung adenocarcinoma. Cancer Lett. 2018;425:43–53.

    Article  CAS  PubMed  Google Scholar 

  85. Qin W, Yuan Q, Liu Y, Zeng Y, Dai X, Shuai Y, et al. Identification of key molecular markers in epithelial ovarian cancer by integrated bioinformatics analysis. Taiwan J Obstet Gynecol. 2021;60(6):983–94.

    Article  PubMed  Google Scholar 

  86. Piao J, Zhu L, Sun J, Li N, Dong B, Yang Y, et al. High expression of CDK1 and BUB1 predicts poor prognosis of pancreatic ductal adenocarcinoma. Gene. 2019;701:15–22.

    Article  CAS  PubMed  Google Scholar 

  87. Dong S, Huang F, Zhang H, Chen Q. Overexpression of BUB1B, CCNA2, CDC20, and CDK1 in tumor tissues predicts poor survival in pancreatic ductal adenocarcinoma. Biosci Rep. 2019;39(2).

  88. Sun Y, Li S-H, Cheng J-W, Chen G, Huang Z-G, Gu Y-Y, et al. Downregulation of miRNA-205 expression and biological mechanism in prostate cancer tumorigenesis and bone metastasis. BioMed Res Int 2020; 2020.

  89. Li Q, Zhang L, Jiang J, Zhang Y, Wang X, Zhang Q, et al. CDK1 and CCNB1 as potential diagnostic markers of rhabdomyosarcoma: validation following bioinformatics analysis. BMC Med Genom. 2019;12(1):1–13.

    Article  Google Scholar 

  90. Yunoki T, Hirano T, Tabuchi Y, Furusawa Y, Torigoe M, Nakajima T, et al. CDKN2A, CDK1, and CCNE1 overexpression in sebaceous gland carcinoma of eyelid. Int Ophthalmol. 2020;40(2):343–50.

    Article  PubMed  Google Scholar 

  91. Zheng H-P, Huang Z-G, He R-Q, Lu H-P, Dang Y-W, Lin P, et al. Integrated assessment of CDK1 upregulation in thyroid cancer. Am J Transl Res. 2019;11(12):7233.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang L, Shao X, Zhong T, Wu Y, Xu A, Sun X, et al. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat Chem Biol. 2021;17(5):567–75.

    Article  CAS  PubMed  Google Scholar 

  93. Ying M, Shao X, Jing H, Liu Y, Qi X, Cao J, et al. Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2. Blood J Am Soc Hematol. 2018;131(24):2698–711.

    CAS  Google Scholar 

  94. Thacker G, Mishra M, Sharma A, Singh AK, Sanyal S, Trivedi AK. CDK2-instigates C/EBPα degradation through SKP2 in Acute myeloid leukemia. Med Oncol. 2021;38(6):1–10.

    Article  Google Scholar 

  95. Chen S, Ni M, Hu T, Gu Y, Feng C, Pan C, et al. TANK-binding kinase 1 inhibitor GSK8612 enhances daunorubicin sensitivity in acute myeloid leukemia cells via the AKT-CDK2 pathway. Am J Transl Res. 2021;13(12):13640.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Tan S-H, Ding H-J, Mei X-P, Liu J-T, Tang Y-X, Li Y. Propofol suppressed cell proliferation and enhanced apoptosis of bladder cancer cells by regulating the miR-340/CDK2 signal axis. Acta Histochem. 2021;123(5): 151728.

    Article  CAS  PubMed  Google Scholar 

  97. Bai Y, Zhang G, Chu H, Li P, Li J. The positive feedback loop of lncRNA DANCR/miR-138/Sox4 facilitates malignancy in non-small cell lung cancer. Am J Cancer Res. 2019;9(2):270.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pandey K, Park N, Park K-S, Hur J, Cho YB, Kang M, et al. Combined CDK2 and CDK4/6 inhibition overcomes palbociclib resistance in breast cancer by enhancing senescence. Cancers. 2020;12(12):3566.

    Article  CAS  PubMed Central  Google Scholar 

  99. Nie L, Wei Y, Zhang F, Hsu Y-H, Chan L-C, Xia W, et al. CDK2-mediated site-specific phosphorylation of EZH2 drives and maintains triple-negative breast cancer. Nat Commun. 2019;10(1):1–15.

    Article  CAS  Google Scholar 

  100. Thacker G, Mishra M, Sharma A, Singh AK, Sanyal S, Trivedi AK. CDK2 destabilizes tumor suppressor C/EBPα expression through ubiquitin-mediated proteasome degradation in acute myeloid leukemia. J Cell Biochem. 2020;121(4):2839–50.

    Article  CAS  PubMed  Google Scholar 

  101. Wang H, Liu Y-C, Zhu C-Y, Yan F, Wang M-Z, Chen X-S, et al. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3-AKT-P21-CDK2 signaling pathway. J Exp Clin Cancer Res. 2020;39(1):1–19.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Shao X, Xiang S, Fu H, Chen Y, Xu A, Liu Y, et al. CDK2 suppression synergizes with all-trans-retinoic acid to overcome the myeloid differentiation blockade of AML cells. Pharmacol Res. 2020;151: 104545.

    Article  CAS  PubMed  Google Scholar 

  103. Rashid A, Duan X, Gao F, Yang M, Yen A. Roscovitine enhances All-trans retinoic acid (ATRA)-induced leukemia cell differentiation: Novel effects on signaling molecules for a putative Cdk2 inhibitor. Cell Signal. 2020;71: 109555.

    Article  CAS  PubMed  Google Scholar 

  104. Abdalla AN, Abdallah ME, Aslam A, Bader A, Vassallo A, Tommasi ND, et al. Synergistic anti leukemia effect of a novel Hsp90 and a Pan cyclin dependent kinase inhibitors. Molecules. 2020;25(9):2220.

    Article  CAS  PubMed Central  Google Scholar 

  105. Zhang Q, Miao S, Han X, Li C, Zhang M, Cui K, et al. MicroRNA-3619-5p suppresses bladder carcinoma progression by directly targeting β-catenin and CDK2 and activating p21. Cell Death Dis. 2018;9(10):1–13.

    Article  Google Scholar 

  106. Jung JH, You S, Oh JW, Yoon J, Yeon A, Shahid M, et al. Integrated proteomic and phosphoproteomic analyses of cisplatin-sensitive and resistant bladder cancer cells reveal CDK2 network as a key therapeutic target. Cancer Lett. 2018;437:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu X, Liu S, Piao C, Zhang Z, Zhang X, Jiang Y, et al. Non-metabolic function of MTHFD2 activates CDK2 in bladder cancer. Cancer Sci. 2021;112(12):4909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jin X, Ge L-P, Li D-Q, Shao Z-M, Di G-H, Xu X-E, et al. LncRNA TROJAN promotes proliferation and resistance to CDK4/6 inhibitor via CDK2 transcriptional activation in ER+ breast cancer. Mol Cancer. 2020;19(1):1–18.

    Article  Google Scholar 

  109. Aziz D, Portman N, Fernandez KJ, Lee C, Alexandrou S, Llop-Guevara A, et al. Synergistic targeting of BRCA1 mutated breast cancers with PARP and CDK2 inhibition. NPJ Breast Cancer. 2021;7(1):1–14.

    Article  Google Scholar 

  110. Jian Y, Huang X, Fang L, Wang M, Liu Q, Xu H, et al. Actin-like protein 6A/MYC/CDK2 axis confers high proliferative activity in triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40(1):1–18.

    Article  Google Scholar 

  111. Satriyo PB, Su CM, Ong JR, Huang W-C, Fong I-H, Lin C-C, et al. 4-Acetylantroquinonol B induced DNA damage response signaling and apoptosis via suppressing CDK2/CDK4 expression in triple negative breast cancer cells. Toxicol Appl Pharmacol. 2021;422: 115493.

    Article  CAS  PubMed  Google Scholar 

  112. Al-Sanea MM, Obaidullah AJ, Shaker ME, Chilingaryan G, Alanazi MM, Alsaif NA, et al. A new CDK2 inhibitor with 3-hydrazonoindolin-2-one scaffold endowed with anti-breast cancer activity: design, synthesis, biological evaluation, and in silico insights. Molecules. 2021;26(2):412.

    Article  CAS  PubMed Central  Google Scholar 

  113. Feng J, Wen T, Li Z, Feng L, Zhou L, Yang Z, et al. Cross-talk between the ER pathway and the lncRNA MAFG-AS1/miR-339-5p/CDK2 axis promotes progression of ER+ breast cancer and confers tamoxifen resistance. Aging (Albany NY). 2020;12(20):20658.

    Article  CAS  Google Scholar 

  114. Zhang X, Zhao Y, Wang C, Ju H, Liu W, Zhang X, et al. Rhomboid domain-containing protein 1 promotes breast cancer progression by regulating the p-Akt and CDK2 levels. Cell Commun Signal. 2018;16(1):1–15.

    Article  Google Scholar 

  115. Blain SW. Targeting p27 tyrosine phosphorylation as a modality to inhibit CDK4 and CDK2 and cause cell cycle arrest in breast cancer cells. Oncoscience. 2018;5(5–6):144.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bi Y, Guo S, Xu X, Kong P, Cui H, Yan T, et al. Decreased ZNF750 promotes angiogenesis in a paracrine manner via activating DANCR/miR-4707-3p/FOXC2 axis in esophageal squamous cell carcinoma. Cell Death Dis. 2020;11(4):1–17.

    Article  Google Scholar 

  117. Patel P, Tsiperson V, Gottesman SR, Somma J, Blain SW. Dual inhibition of CDK4 and CDK2 via targeting p27 tyrosine phosphorylation induces a potent and durable response in breast cancer cells. Mol Cancer Res. 2018;16(3):361–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang Y, Chen Y, Cheng X, Zhang K, Wang H, Liu B, et al. Design, synthesis and biological evaluation of pyrimidine derivatives as novel CDK2 inhibitors that induce apoptosis and cell cycle arrest in breast cancer cells. Bioorg Med Chem. 2018;26(12):3491–501.

    Article  CAS  PubMed  Google Scholar 

  119. Abd El-Sattar NE, Badawy EH, AbdEl-Hady WH, Abo-Alkasem MI, Mandour AA, Ismail NS. Design and synthesis of new CDK2 inhibitors containing thiazolone and thiazolthione scafold with apoptotic activity. Chem Pharm Bull. 2021;69(1):106–17.

    Article  CAS  Google Scholar 

  120. He Z, Zhang R, Jiang F, Zhang H, Zhao A, Xu B, et al. FADS1-FADS2 genetic polymorphisms are associated with fatty acid metabolism through changes in DNA methylation and gene expression. Clin Epigenetics. 2018;10(1):113.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sang X, Belmessabih N, Wang R, Stephen P, Lin S-X. CRIF1-CDK2 interface inhibitors enhance taxol inhibition of the lethal triple-negative breast cancer. Cancers. 2022;14(4):989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Scott GK, Chu D, Kaur R, Malato J, Rothschild DE, Frazier K, et al. ERpS294 is a biomarker of ligand or mutational ERα activation and a breast cancer target for CDK2 inhibition. Oncotarget. 2017;8(48):83432.

    Article  PubMed  Google Scholar 

  123. Hur S, Kim JH, Yun J, Ju YW, Han JM, Heo W, et al. Protein Phosphatase 1H, cyclin-dependent kinase inhibitor p27, and cyclin-dependent kinase 2 in paclitaxel resistance for triple negative breast cancers. J Breast Cancer. 2020;23(2):162.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rao SS, Stoehr J, Dokic D, Wan L, Decker JT, Konopka K, et al. Synergistic effect of eribulin and CDK inhibition for the treatment of triple negative breast cancer. Oncotarget. 2017;8(48):83925.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Qu C, Zhu W, Dong K, Pan Z, Chen Y, Chen X, et al. Inhibitory effect of hydroxysafflor yellow B on the proliferation of human breast cancer MCF-7 cells. Recent Pat Anti-Cancer Drug Discov. 2019;14(2):187–97.

    Article  CAS  Google Scholar 

  126. Ismail MM, Soliman DH, Sabour R, Farrag AM. Synthesis of new arylazopyrazoles as apoptosis inducers: candidates to inhibit proliferation of MCF-7 cells. Arch Pharm. 2021;354(1):2000214.

    Article  CAS  Google Scholar 

  127. Huang S-W, Sun M-T, Lee W-S, Su Y-S, Lee Y-T, Chiang M-H, et al. Cancer as an infectious disease: a different treatment alternative using a combination of tigecycline and pyrvinium pamoate–an example of breast cancer. J Microbiol Immunol Infect. 2022;55(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  128. Zheng Q, Zhang J, Zhang T, Liu Y, Du X, Dai X, et al. Hsa_circ_0000520 overexpression increases CDK2 expression via miR-1296 to facilitate cervical cancer cell proliferation. J Transl Med. 2021;19(1):1–16.

    Article  Google Scholar 

  129. Qu X, Zhu L, Song L, Liu S. circ_0084927 promotes cervical carcinogenesis by sponging miR-1179 that suppresses CDK2, a cell cycle-related gene. Cancer Cell Int. 2020;20(1):1–17.

    Article  Google Scholar 

  130. Zhou M, Yang Z, Wang D, Chen P, Zhang Y. The circular RNA circZFR phosphorylates Rb promoting cervical cancer progression by regulating the SSBP1/CDK2/cyclin E1 complex. J Exp Clin Cancer Res. 2021;40(1):1–18.

    Article  Google Scholar 

  131. Abd El-Karim SS, Syam YM, El Kerdawy AM, Abdelghany TM. New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: Synthesis, CDK2 inhibition, QSAR and molecular docking studies. Bioorg Chem. 2019;86:80–96.

    Article  CAS  PubMed  Google Scholar 

  132. Saqub H, Proetsch-Gugerbauer H, Bezrookove V, Nosrati M, Vaquero EM, de Semir D, et al. Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting CDK2/5/9. Sci Rep. 2020;10(1):1–13.

    Article  Google Scholar 

  133. Peng X, Pan K, Zhao W, Zhang J, Yuan S, Wen X, et al. NPTX1 inhibits colon cancer cell proliferation through down-regulating cyclin A2 and CDK2 expression. Cell Biol Int. 2018;42(5):589–97.

    Article  CAS  PubMed  Google Scholar 

  134. Samir N, George RF, Elrazaz EZ, Ayoub IM, Shalaby EM, Plaisier JR, et al. Synthesis of some tropane-based compounds targeting colon cancer. Future Med Chem. 2020;12(23):2123–40.

    Article  CAS  PubMed  Google Scholar 

  135. Zhou X, Li S, Ma T, Zeng J, Li H, Liu X, et al. MEX3A knockdown inhibits the tumorigenesis of colorectal cancer via modulating CDK2 expression. Exp Ther Med. 2021;22(5):1–8.

    Article  Google Scholar 

  136. Somarelli JA, Roghani RS, Moghaddam AS, Thomas BC, Rupprecht G, Ware KE, et al. A precision medicine drug discovery pipeline identifies combined CDK2 and 9 inhibition as a novel therapeutic strategy in colorectal cancer. Mol Cancer Ther. 2020;19(12):2516–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang J, Cui K, Huang L, Yang F, Sun S, Bian Z, et al. SLCO4A1-AS1 promotes colorectal tumourigenesis by regulating Cdk2/c-Myc signalling. J Biomed Sci. 2022;29(1):1–17.

    Article  Google Scholar 

  138. Tang Z, Li L, Tang Y, Xie D, Wu K, Wei W, et al. CDK 2 positively regulates aerobic glycolysis by suppressing SIRT 5 in gastric cancer. Cancer Sci. 2018;109(8):2590–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang Y, Jiang R, Wang Q, Li Y, Sun Z, Zhao H. Silencing LINC01021 inhibits gastric cancer through upregulation of KISS1 expression by blocking CDK2-dependent phosphorylation of CDX2. Mol Ther Nucleic Acids. 2021;24:832–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen C, Lei J, Zheng Q, Tan S, Ding K, Yu C. Poly (rC) binding protein 2 (PCBP 2) promotes the viability of human gastric cancer cells by regulating CDK2. FEBS Open Bio. 2018;8(5):764–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cheng A-Y, Chien Y-C, Lee H-C, Hsieh Y-H, Yu Y-L. Water-extracted Ganoderma lucidum induces apoptosis and S-phase arrest via cyclin-CDK2 pathway in glioblastoma cells. Molecules. 2020;25(16):3585.

    Article  CAS  PubMed Central  Google Scholar 

  142. Guo E, Liang C, He X, Song G, Liu H, Lv Z, et al. Long noncoding RNA LINC00958 accelerates gliomagenesis through regulating miR-203/CDK2. DNA Cell Biol. 2018;37(5):465–72.

    Article  CAS  PubMed  Google Scholar 

  143. Gao T, Gu G, Tian J, Zhang R, Zheng X, Wang Y, et al. LncRNA HSP90AA1-IT1 promotes gliomas by targeting miR-885-5p-CDK2 pathway. Oncotarget. 2017;8(43):75284.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zhu Y, Ke K-B, Xia Z-K, Li H-J, Su R, Dong C, et al. Discovery of vanoxerine dihydrochloride as a CDK2/4/6 triple-inhibitor for the treatment of human hepatocellular carcinoma. Mol Med. 2021;27(1):1–14.

    Article  Google Scholar 

  145. Liang Y, Fan Y, Liu Y, Fan H. HNRNPU promotes the progression of hepatocellular carcinoma by enhancing CDK2 transcription. Exp Cell Res. 2021;409(1): 112898.

    Article  CAS  PubMed  Google Scholar 

  146. Yang A-L, Wu Q, Hu Z-D, Wang S-P, Tao Y-F, Wang A-M, et al. A network pharmacology approach to investigate the anticancer mechanism of cinobufagin against hepatocellular carcinoma via downregulation of EGFR-CDK2 signaling. Toxicol Appl Pharmacol. 2021;431:115739.

    Article  CAS  PubMed  Google Scholar 

  147. Liang XH, Feng ZP, Liu FQ, Yan R, Yin LY, Shen H, et al. MAPRE1 promotes cell cycle progression of hepatocellular carcinoma cells by interacting with CDK2. Cell Biol Int. 2020;44(11):2326–33.

    Article  CAS  PubMed  Google Scholar 

  148. Huang S, Zhang C, Sun C, Hou Y, Zhang Y, Tam NL, et al. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging (Albany NY). 2020;12(3):3025.

    Article  CAS  Google Scholar 

  149. Wei W, Huang X, Shen X, Lian J, Chen Y, Wang W, et al. Overexpression of IncRNA TPT1-AS1 suppresses hepatocellular carcinoma cell proliferation by downregulating CDK2. Crit Rev™ Eukaryot Gene Expr. 2022;32.

  150. Kang J, Huang X, Dong W, Zhu X, Li M, Cui N. Long non-coding RNA LINC00630 facilitates hepatocellular carcinoma progression through recruiting transcription factor E2F1 to up-regulate cyclin-dependent kinase 2 expression. Hum Exp Toxicol. 2021;40(12_suppl):S257–68.

    Article  CAS  PubMed  Google Scholar 

  151. Ghasemi H, Jamshidi A, Ghatee MA, Mazhab-Jafari K, Khorasani M, Rahmati M, et al. PPARγ activation by pioglitazone enhances the anti-proliferative effects of doxorubicin on pro-monocytic THP-1 leukemia cells via inducing apoptosis and G2/M cell cycle arrest. J Receptors Signal Transduct. 2021. https://doi.org/10.1080/10799893.2021.1988972.

    Article  Google Scholar 

  152. Almehmadi SJ, Alsaedi AM, Harras MF, Farghaly TA. Synthesis of a new series of pyrazolo [1, 5-a] pyrimidines as CDK2 inhibitors and anti-leukemia. Bioorg Chem. 2021;117: 105431.

    Article  CAS  PubMed  Google Scholar 

  153. Xin X, Lu Y, Xie S, Chen Y, Jiang X, Song S, et al. miR-155 accelerates the growth of human liver cancer cells by activating CDK2 via targeting H3F3A. Mol Ther Oncolytics. 2020;17:471–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yu D, Li Y, Zhong M. MicroRNA-597 inhibits NSCLC progression through negatively regulating CDK2 expression. Eur Rev Med Pharmacol Sci. 2020;24(8):4288–97.

    PubMed  Google Scholar 

  155. Shen Z, Wang J, Ke K, Chen R, Zuo A, Zhang R, et al. Polyphyllin I, a lethal partner of Palbociclib, suppresses non-small cell lung cancer through activation of p21/CDK2/Rb pathway in vitro and in vivo. Cell Cycle. 2021;20(23):2494–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li Z, Zhang Y, Zhou Y, Wang F, Yin C, Ding L, et al. Tanshinone IIA suppresses the progression of lung adenocarcinoma through regulating CCNA2-CDK2 complex and AURKA/PLK1 pathway. Sci Rep. 2021;11(1):1–12.

    Article  Google Scholar 

  157. Kawakami M, Mustachio LM, Rodriguez-Canales J, Mino B, Roszik J, Tong P, et al. Next-generation CDK2/9 inhibitors and anaphase catastrophe in lung cancer. JNCI J Natl Cancer Inst. 2017;109(6).

  158. Lee H, Lee H-J, Bae IJ, Kim JJ, Kim S-H. Inhibition of STAT3/VEGF/CDK2 axis signaling is critically involved in the antiangiogenic and apoptotic effects of arsenic herbal mixture PROS in non-small lung cancer cells. Oncotarget. 2017;8(60): 101771.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Chorner PM, Moorehead RA. A-674563, a putative AKT1 inhibitor that also suppresses CDK2 activity, inhibits human NSCLC cell growth more effectively than the pan-AKT inhibitor, MK-2206. PLoS ONE. 2018;13(2): e0193344.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Bolin S, Borgenvik A, Persson CU, Sundström A, Qi J, Bradner JE, et al. Combined BET bromodomain and CDK2 inhibition in MYC-driven medulloblastoma. Oncogene. 2018;37(21):2850–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mohammed ER, Elmasry GF. Development of newly synthesised quinazolinone-based CDK2 inhibitors with potent efficacy against melanoma. J Enzyme Inhib Med Chem. 2022;37(1):686–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Roy T, Boateng ST, Banang-Mbeumi S, Singh PK, Basnet P, Chamcheu R-CN, et al. Synthesis, inverse docking-assisted identification and in vitro biological characterization of Flavonol-based analogs of fisetin as c-Kit, CDK2 and mTOR inhibitors against melanoma and non-melanoma skin cancers. Bioorg Chem 2021;107:104595.

  163. Bo L, Wei B, Wang Z, Kong D, Gao Z, Miao Z. Bioinformatics analysis of the CDK2 functions in neuroblastoma. Mol Med Rep. 2018;17(3):3951–9.

    CAS  PubMed  Google Scholar 

  164. Han Y, Wei Y, Yao J, Chu Y-Y, Li C-W, Hsu JL, et al. Inhibition of CDK2 reduces EZH2 phosphorylation and reactivates ERα expression in high-grade serous ovarian carcinoma. Am J Cancer Res. 2020;10(4):1194.

    PubMed  PubMed Central  Google Scholar 

  165. He Y, Wei L, Zhang S, Liu H, Fang F, Li Y. LncRNA PLAC2 positively regulates CDK2 to promote ovarian carcinoma cell proliferation. Cancer Manage Res. 2020;12:5713.

    Article  CAS  Google Scholar 

  166. Duan P-j, Zhao J-h, Xie L-l. Cul4B promotes the progression of ovarian cancer by upregulating the expression of CDK2 and CyclinD1. J Ovarian Res. 2020;13(1):1–10.

    Article  Google Scholar 

  167. Ding C-H, Yin C, Chen S-J, Wen L-Z, Ding K, Lei S-J, et al. The HNF1α-regulated lncRNA HNF1A-AS1 reverses the malignancy of hepatocellular carcinoma by enhancing the phosphatase activity of SHP-1. Mol Cancer. 2018;17(1):1–14.

    Article  CAS  Google Scholar 

  168. Chen T, Liu L, Zou Y, Hu X, Zhang W, Zhou T, et al. Nobiletin downregulates the SKP2-p21/p27-CDK2 axis to inhibit tumor progression and shows synergistic effects with palbociclib on renal cell carcinoma. Cancer Biol Med. 2021;18(1):227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Xu C, Zheng J. siRNA against TSG101 reduces proliferation and induces G0/G1 arrest in renal cell carcinoma–involvement of c-myc, cyclin E1, and CDK2. Cell Mol Biol Lett. 2019;24(1):1–9.

    Article  Google Scholar 

  170. Tan G, Zhang G-Y, Xu J, Kang C-W, Yan Z-K, Lei M, et al. PLA2G10 facilitates the cell-cycle progression of soft tissue leiomyosarcoma cells at least by elevating cyclin E1/CDK2 expression. Biochem Biophys Res Commun. 2020;527(2):525–31.

    Article  CAS  PubMed  Google Scholar 

  171. Wang F, Li Z, Zhou J, Wang G, Zhang W, Xu J, et al. SIRT1 regulates the phosphorylation and degradation of P27 by deacetylating CDK2 to promote T-cell acute lymphoblastic leukemia progression. J Exp Clin Cancer Res. 2021;40(1):1–16.

    Article  Google Scholar 

  172. Costa C, Wang Y, Ly A, Hosono Y, Murchie E, Walmsley CS, et al. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov. 2020;10(1):72–85.

    Article  CAS  PubMed  Google Scholar 

  173. Guenther LM, Dharia NV, Ross L, Conway A, Robichaud AL, Catlett JL, et al. A combination CDK4/6 and IGF1R inhibitor strategy for Ewing sarcoma. Clin Cancer Res. 2019;25(4):1343–57.

    Article  CAS  PubMed  Google Scholar 

  174. Xia Z-K, Wang W, Qiu J-G, Shi X-N, Li H-J, Chen R, et al. Discovery of a new CDK4/6 and PI3K/AKT multiple kinase inhibitor aminoquinol for the treatment of hepatocellular carcinoma. Front Pharmacol. 2021;12.

  175. Bazzar W, Bocci M, Hejll E, Högqvist Tabor V, Hydbring P, Grandien A, et al. Pharmacological inactivation of CDK2 inhibits MYC/BCL-XL-driven leukemia in vivo through induction of cellular senescence. Cell Cycle. 2021;20(1):23–38.

    Article  CAS  PubMed  Google Scholar 

  176. Gao Y, Wang H, Zhong A, Yu T. Expression and prognosis of CyclinA and CDK2 in patients with advanced cervical cancer after chemotherapy. Cell Mol Biol (Noisy-le-grand). 2020;66(3):85–91.

    Article  Google Scholar 

  177. Liu H, Weng J. A comprehensive bioinformatic analysis of cyclin-dependent kinase 2 (CDK2) in glioma. Gene. 2022;822: 146325.

    Article  CAS  PubMed  Google Scholar 

  178. Dong W, Zhu H, Gao H, Shi W, Zhang Y, Wang H, et al. Expression of cyclin E/Cdk2/p27Kip1 in growth hormone adenomas. World Neurosurg. 2019;121:e45–53.

    Article  PubMed  Google Scholar 

  179. Lian J, Zhang X, Lu Y, Hao S, Zhang Z, Yang Y. Expression and significance of LncRNA-MINCR and CDK2 mRNA in primary hepatocellular carcinoma. Comb Chem High Throughput Screening. 2019;22(3):201–6.

    Article  CAS  Google Scholar 

  180. Liu T-T, Li R, Huo C, Li J-P, Yao J, Ji X-L, et al. Identification of CDK2-related immune forecast model and ceRNA in lung adenocarcinoma, a pan-cancer analysis. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.682002.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cao T, Xiao T, Huang G, Xu Y, Zhu JJ, Wang K, et al. CDK3, target of miR-4469, suppresses breast cancer metastasis via inhibiting Wnt/β-catenin pathway. Oncotarget. 2017;8(49):84917.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Zhang X, Zhang B, Zhang P, Lian L, Li L, Qiu Z, et al. Norcantharidin regulates ERα signaling and tamoxifen resistance via targeting miR-873/CDK3 in breast cancer cells. PLoS ONE. 2019;14(5): e0217181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Li W, Zheng Z, Chen H, Cai Y, Xie W. Knockdown of long non-coding RNA PVT1 induces apoptosis and cell cycle arrest in clear cell renal cell carcinoma through the epidermal growth factor receptor pathway. Oncol Lett. 2018;15(5):7855–63.

    PubMed  PubMed Central  Google Scholar 

  184. Cui J, Yang Y, Li H, Leng Y, Qian K, Huang Q, et al. MiR-873 regulates ERα transcriptional activity and tamoxifen resistance via targeting CDK3 in breast cancer cells. Oncogene. 2015;34(30):3895–907.

    Article  CAS  PubMed  Google Scholar 

  185. Lu J, Zhang ZL, Huang D, Tang N, Li Y, Peng Z, et al. Cdk3-promoted epithelial-mesenchymal transition through activating AP-1 is involved in colorectal cancer metastasis. Oncotarget. 2016;7(6):7012.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Liu Z-H, Yang S-Z, Li W-Y, Dong S-Y, Zhou S-Y, Xu S. CircRNA_141539 can serve as an oncogenic factor in esophageal squamous cell carcinoma by sponging miR-4469 and activating CDK3 gene. Aging (Albany NY). 2021;13(8):12179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhang Z, Huang A, Zhang A, Zhou C. HuR promotes breast cancer cell proliferation and survival via binding to CDK3 mRNA. Biomed Pharmacother. 2017;91:788–95.

    Article  CAS  PubMed  Google Scholar 

  188. Zheng L, Li X, Meng X, Chou J, Hu J, Zhang F, et al. Competing endogenous RNA networks of CYP4Z1 and pseudogene CYP4Z2P confer tamoxifen resistance in breast cancer. Mol Cell Endocrinol. 2016;427:133–42.

    Article  CAS  PubMed  Google Scholar 

  189. Wang P, Chen S, Fang H, Wu X, Chen D, Peng L, et al. miR-214/199a/199a* cluster levels predict poor survival in hepatocellular carcinoma through interference with cell-cycle regulators. Oncotarget. 2016;7(1):929.

    Article  PubMed  Google Scholar 

  190. Sugimori N, Espinoza JL, Trung LQ, Takami A, Kondo Y, An DT, et al. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells. PLoS ONE. 2015;10(4): e0120709.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Zhang Y, Yang L, Ling C, Heng W. HuR facilitates cancer stemness of lung cancer cells via regulating miR-873/CDK3 and miR-125a-3p/CDK3 axis. Biotech Lett. 2018;40(4):623–31.

    Article  CAS  Google Scholar 

  192. Zhao Y, Guo Q, Chen J, Hu J, Wang S, Sun Y. Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep. 2014;31(1):358–64.

    Article  CAS  PubMed  Google Scholar 

  193. Xiao T, Zhu J, Huang S, Peng C, He S, Du J, et al. Phosphorylation of NFAT3 by CDK3 induces cell transformation and promotes tumor growth in skin cancer. Oncogene. 2017;36(20):2835–45.

    Article  CAS  PubMed  Google Scholar 

  194. Nakatani K, Matsuo H, Harata Y, Higashitani M, Koyama A, Noura M, et al. Inhibition of CDK4/6 and autophagy synergistically induces apoptosis in t (8; 21) acute myeloid leukemia cells. Int J Hematol. 2021;113(2):243–53.

    Article  CAS  PubMed  Google Scholar 

  195. Rubio C, Martínez-Fernández M, Segovia C, Lodewijk I, Suarez-Cabrera C, Segrelles C, et al. CDK4/6 inhibitor as a novel therapeutic approach for advanced bladder cancer independently of RB1 status. Clin Cancer Res. 2019;25(1):390–402.

    Article  CAS  PubMed  Google Scholar 

  196. Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell. 2018;34(6):893-905.e8.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Asghar US, Barr AR, Cutts R, Beaney M, Babina I, Sampath D, et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin Cancer Res. 2017;23(18):5561–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548(7668):471–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Oh SJ, Cho H, Kim S, Noh KH, Song K-H, Lee H-J, et al. Targeting cyclin D-CDK4/6 sensitizes immune-refractory cancer by blocking the SCP3–NANOG axis. Can Res. 2018;78(10):2638–53.

    Article  CAS  Google Scholar 

  200. Shen W-C, Shi Y-W. Effect of MiR-142-3p targeting HOXA5 on proliferation, cycle arrest and apoptosis of acute B lymphocytic leukemia cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2021;29(4):1085–92.

    PubMed  Google Scholar 

  201. Zhang L, Wang X, Wu J, Xiao R, Liu J. MiR-335-3p inhibits cell proliferation and induces cell cycle arrest and apoptosis in acute myeloid leukemia by targeting EIF3E. Biosci Biotechnol Biochem. 2021;85(9):1953–61.

    Article  PubMed  Google Scholar 

  202. Wu F, Yin C, Qi J, Duan D, Jiang X, Yu J, et al. miR-362-5p promotes cell proliferation and cell cycle progression by targeting GAS7 in acute myeloid leukemia. Hum Cell. 2020;33(2):405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhang T, Wang J, Zhai X, Li H, Li C, Chang J. MiR-124 retards bladder cancer growth by directly targeting CDK4. Acta Biochim Biophys Sin. 2014;46(12):1072–9.

    Article  CAS  PubMed  Google Scholar 

  204. Chen S, Wang W, Lin G, Zhong S. MicroRNA-195 inhibits epithelial-mesenchymal transition via downregulating CDK4 in bladder cancer. Int J Clin Exp Pathol. 2018;11(8):3891.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Cao Z, Xu L, Zhao S, Zhu X. The functions of microRNA-124 on bladder cancer. Onco Targets Ther. 2019;12:3429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ge Q, Wang C, Chen Z, Li F, Hu J, Ye Z. The suppressive effects of miR-1180–5p on the proliferation and tumorigenicity of bladder cancer cells. 2017.

  207. Alves CL, Ehmsen S, Terp MG, Portman N, Tuttolomondo M, Gammelgaard OL, et al. Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun. 2021;12(1):1–15.

    Google Scholar 

  208. Teo ZL, Versaci S, Dushyanthen S, Caramia F, Savas P, Mintoff CP, et al. Combined CDK4/6 and PI3Kα inhibition is synergistic and immunogenic in triple-negative breast cancer. Can Res. 2017;77(22):6340–52.

    Article  CAS  Google Scholar 

  209. Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40(1):1–18.

    Article  Google Scholar 

  210. Zhang Z, Li J, Ou Y, Yang G, Deng K, Wang Q, et al. CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism. Signal Transduct Target Ther. 2020;5(1):1–13.

    Google Scholar 

  211. Kharenko OA, Patel RG, Calosing C, van der Horst EH. Combination of ZEN-3694 with CDK4/6 inhibitors reverses acquired resistance to CDK4/6 inhibitors in ER-positive breast cancer. Cancer Gene Ther. 2021:1–11.

  212. Dang F, Nie L, Zhou J, Shimizu K, Chu C, Wu Z, et al. Inhibition of CK1ε potentiates the therapeutic efficacy of CDK4/6 inhibitor in breast cancer. Nat Commun. 2021;12(1):1–15.

    Article  Google Scholar 

  213. Charles A, Bourne CM, Korontsvit T, Aretz ZE, Mun SS, Dao T, et al. Low-dose CDK4/6 inhibitors induce presentation of pathway specific MHC ligands as potential targets for cancer immunotherapy. Oncoimmunology. 2021;10(1):1916243.

    Article  PubMed  PubMed Central  Google Scholar 

  214. O’Brien NA, McDermott MS, Conklin D, Luo T, Ayala R, Salgar S, et al. Targeting activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based therapies in preclinical models of hormone receptor-positive breast cancer. Breast Cancer Res. 2020;22(1):1–17.

    Article  Google Scholar 

  215. Zhang H, Wang J, Li J, Zhou X, Yin L, Wang Y, et al. HMGB1 is a key factor for tamoxifen resistance and has the potential to predict the efficacy of CDK4/6 inhibitors in breast cancer. Cancer Sci. 2021;112(4):1603–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Romero-Pozuelo J, Figlia G, Kaya O, Martin-Villalba A, Teleman AA. Cdk4 and Cdk6 couple the cell-cycle machinery to cell growth via mTORC1. Cell Rep. 2020;31(2): 107504.

    Article  CAS  PubMed  Google Scholar 

  217. Tian C, Wei Y, Li J, Huang Z, Wang Q, Lin Y, et al. A Novel CDK4/6 and PARP dual inhibitor ZC-22 effectively suppresses tumor growth and improves the response to cisplatin treatment in breast and ovarian cancer. Int J Mol Sci. 2022;23(5):2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Kartika ID, Kotani H, Iida Y, Koyanagi A, Tanino R, Harada M. Protective role of cytoplasmic p21Cip1/Waf1 in apoptosis of CDK4/6 inhibitor-induced senescence in breast cancer cells. Cancer Med. 2021;10(24):8988–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Feng T, Xu D, Tu C, Li W, Ning Y, Ding J, et al. MiR-124 inhibits cell proliferation in breast cancer through downregulation of CDK4. Tumor Biol. 2015;36(8):5987–97.

    Article  CAS  Google Scholar 

  220. Li Q, Liu J, Jia Y, Li T, Zhang M. miR-623 suppresses cell proliferation, migration and invasion through direct inhibition of XRCC5 in breast cancer. Aging (Albany NY). 2020;12(11):10246.

    Article  CAS  Google Scholar 

  221. Wu J, Xu W, Ma L, Sheng J, Ye M, Chen H, et al. Formononetin relieves the facilitating effect of lncRNA AFAP1-AS1-miR-195/miR-545 axis on progression and chemo-resistance of triple-negative breast cancer. Aging (Albany NY). 2021;13(14):18191.

    Article  CAS  Google Scholar 

  222. Feng T, Shao F, Wu Q, Zhang X, Xu D, Qian K, et al. miR-124 downregulation leads to breast cancer progression via LncRNA-MALAT1 regulation and CDK4/E2F1 signal activation. Oncotarget. 2016;7(13):16205.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Li D, Song H, Wu T, Xie D, Hu J, Zhao J, et al. MiR-519d-3p suppresses breast cancer cell growth and motility via targeting LIM domain kinase 1. Mol Cell Biochem. 2018;444(1):169–78.

    Article  CAS  PubMed  Google Scholar 

  224. Peng X, Yan B, Shen Y. MiR-1301-3p inhibits human breast cancer cell proliferation by regulating cell cycle progression and apoptosis through directly targeting ICT1. Breast Cancer. 2018;25(6):742–52.

    Article  PubMed  Google Scholar 

  225. Flaxman SR, Bourne RR, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221–34.

    Article  PubMed  Google Scholar 

  226. Achari C, Winslow S, Ceder Y, Larsson C. Expression of miR-34c induces G2/M cell cycle arrest in breast cancer cells. BMC Cancer. 2014;14(1):1–9.

    Article  Google Scholar 

  227. Wang Z, Ren C, Yang L, Zhang X, Liu J, Zhu Y, et al. Silencing of circular RNA_0000326 inhibits cervical cancer cell proliferation, migration and invasion by boosting microRNA-338-3p-dependent down-regulation of CDK4. Aging (Albany NY). 2021;13(6):9119.

    Article  CAS  Google Scholar 

  228. Xiao H, Zeng J, Li H, Chen K, Yu G, Hu J, et al. MiR-1 downregulation correlates with poor survival in clear cell renal cell carcinoma where it interferes with cell cycle regulation and metastasis. Oncotarget. 2015;6(15):13201.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Gu Y, Niu S, Wang Y, Duan L, Pan Y, Tong Z, et al. DMDRMR-mediated regulation of m6A-modified CDK4 by m6A reader IGF2BP3 drives ccRCC progression. Can Res. 2021;81(4):923–34.

    Article  CAS  Google Scholar 

  230. Xiao H, Xiao W, Cao J, Li H, Guan W, Guo X, et al. miR-206 functions as a novel cell cycle regulator and tumor suppressor in clear-cell renal cell carcinoma. Cancer Lett. 2016;374(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  231. Sun W, Nie W, Wang Z, Zhang H, Li Y, Fang X. Lnc HAGLR promotes colon cancer progression through sponging miR-185-5p and activating CDK4 and CDK6 in vitro and in vivo. Onco Targets Ther. 2020;13:5913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Yang H, Lin J, Jiang J, Ji J, Wang C, Zhang J. miR-20b-5p functions as tumor suppressor microRNA by targeting cyclinD1 in colon cancer. Cell Cycle. 2020;19(21):2939–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ma X, Luo J, Zhang Y, Sun D, Lin Y. LncRNA MCM3AP-AS1 upregulates CDK4 by sponging miR-545 to suppress G1 arrest in colorectal cancer. Cancer Manage Res. 2020;12:8117.

    Article  CAS  Google Scholar 

  234. Zhu X, Ma S-P, Yang D, Liu Y, Wang Y-P, Lin T, et al. miR-142–3p suppresses cell growth by targeting CDK4 in colorectal cancer. Cell Physiol Biochem. 2018;51(4):1969–81.

    Article  CAS  PubMed  Google Scholar 

  235. Lulla AR, Slifker MJ, Zhou Y, Lev A, Einarson MB, Dicker DT, et al. miR-6883 family miRNAs target CDK4/6 to induce G1 phase cell-cycle arrest in colon cancer cells. Can Res. 2017;77(24):6902–13.

    Article  CAS  Google Scholar 

  236. Zhang T, Cai X, Li Q, Xue P, Chen Z, Dong X, et al. Hsa-miR-875-5p exerts tumor suppressor function through down-regulation of EGFR in colorectal carcinoma (CRC). Oncotarget. 2016;7(27):42225.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Zheng Z, Hong D, Zhang X, Chang Y, Sun N, Lin Z, et al. uc. 77-downregulation promotes colorectal cancer cell proliferation by inhibiting FBXW8-mediated CDK4 protein degradation. Front Oncol. 2021;11:1419.

    Google Scholar 

  238. Wu C-L, Shan T-D, Han Y, Kong Y, Li Y-B, Peng X-G, et al. Long intergenic noncoding RNA 00665 promotes proliferation and inhibits apoptosis in colorectal cancer by regulating miR-126-5p. Aging (Albany NY). 2021;13(10):13571.

    Article  CAS  Google Scholar 

  239. Zheng Z, Cui H, Wang Y, Yao W. Downregulation of RPS15A by miR-29a-3p attenuates cell proliferation in colorectal carcinoma. Biosci Biotechnol Biochem. 2019;83(11):2057–64.

    Article  CAS  PubMed  Google Scholar 

  240. Ding C, Wei R, Rodríguez RA, Mullor MDMR. LncRNA PCAT-1 plays an oncogenic role in epithelial ovarian cancer by modulating cyclinD1/CDK4 expression. Int J Clin Exp Pathol. 2019;12(6):2148.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Lang B, Zhao S. miR-486 functions as a tumor suppressor in esophageal cancer by targeting CDK4/BCAS2. Oncol Rep. 2018;39(1):71–80.

    CAS  PubMed  Google Scholar 

  242. Zhang Y, Wang Q, Li H, Ye T, Gao F, Liu Y. miR-124 radiosensitizes human esophageal cancer cell TE-1 by targeting CDK4. Genet Mol Res. 2016;15(2):1–10.

    Article  Google Scholar 

  243. Jiang S, Zhao C, Yang X, Li X, Pan Q, Huang H, et al. miR-1 suppresses the growth of esophageal squamous cell carcinoma in vivo and in vitro through the downregulation of MET, cyclin D1 and CDK4 expression. Int J Mol Med. 2016;38(1):113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lei X, Yang S, Yang Y, Zhang J, Wang Y, Cao M. Long noncoding RNA DLX6-AS1 targets miR-124-3p/CDK4 to accelerate Ewing’s sarcoma. Am J Transl Res. 2019;11(10):6569.

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Qian Y, Wu X, Wang H, Hou G, Han X, Song W. PAK1 silencing is synthetic lethal with CDK4/6 inhibition in gastric cancer cells via regulating PDK1 expression. Hum Cell. 2020;33(2):377–85.

    Article  CAS  PubMed  Google Scholar 

  246. Lin A, Bu W, Wang P, Gao J, Yang J, Ding F, et al. miR-449a/b negatively regulates E2F1 to suppress proliferation of gastric cancer cells. Nan Fang yi ke da xue xue bao J South Med Univ. 2020;40(1):13–9.

    CAS  Google Scholar 

  247. Luo D, Fan H, Ma X, Yang C, He Y, Ge Y, et al. miR-1301-3p promotes cell proliferation and facilitates cell cycle progression via targeting SIRT1 in gastric cancer. Front Oncol. 2021;11.

  248. Lin X-M, Wang Z-J, Lin Y-X, Chen H. Decreased exosome-delivered miR-486-5p is responsible for the peritoneal metastasis of gastric cancer cells by promoting EMT progress. World J Surg Oncol. 2021;19(1):1–10.

    Article  Google Scholar 

  249. Sun C, Zhang S, Liu C, Liu X. Curcumin promoted miR-34a expression and suppressed proliferation of gastric cancer cells. Cancer Biother Radiopharm. 2019;34(10):634–41.

    Article  CAS  PubMed  Google Scholar 

  250. Zhang Q, Feng Y, Liu P, Yang J. MiR-143 inhibits cell proliferation and invasion by targeting DNMT3A in gastric cancer. Tumor Biol. 2017;39(7):1010428317711312.

    Article  Google Scholar 

  251. Liao A, Tan G, Chen L, Zhou W, Hu H. RASSF1A inhibits gastric cancer cell proliferation by miR-711-mediated downregulation of CDK4 expression. Oncotarget. 2016;7(5):5842.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Mi Y, Li Y, He Z, Chen D, Hong Q, You J. Upregulation of linc-ROR promotes the proliferation, migration, and invasion of gastric cancer cells through miR-212-3p/FGF7 axis. Cancer Manage Res. 2021;13:899.

    Article  CAS  Google Scholar 

  253. Zhao Z, Wang L, Song W, Cui H, Chen G, Qiao F, et al. Reduced miR-29a-3p expression is linked to the cell proliferation and cell migration in gastric cancer. World J Surg Oncol. 2015;13(1):1–7.

    Article  Google Scholar 

  254. Lin Z, Zhou Z, Guo H, He Y, Pang X, Zhang X, et al. Long noncoding RNA gastric cancer-related lncRNA1 mediates gastric malignancy through miRNA-885-3p and cyclin-dependent kinase 4. Cell Death Dis. 2018;9(6):1–16.

    Article  Google Scholar 

  255. Li M, Xiao A, Floyd D, Olmez I, Lee J, Godlewski J, et al. CDK4/6 inhibition is more active against the glioblastoma proneural subtype. Oncotarget. 2017;8(33):55319.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Olmez I, Zhang Y, Manigat L, Benamar M, Brenneman B, Nakano I, et al. Combined c-Met/Trk inhibition overcomes resistance to CDK4/6 inhibitors in glioblastoma. Can Res. 2018;78(15):4360–9.

    Article  CAS  Google Scholar 

  257. Moradimotlagh A, Arefian E, Valojerdi RR, Ghaemi S, Adegani FJ, Soleimani M. MicroRNA-129 inhibits glioma cell growth by targeting CDK4, CDK6, and MDM2. Mol Ther Nucleic Acids. 2020;19:759–64.

    Article  CAS  PubMed  Google Scholar 

  258. Deng X, Ma L, Wu M, Zhang G, Jin C, Guo Y, et al. miR-124 radiosensitizes human glioma cells by targeting CDK4. J Neurooncol. 2013;114(3):263–74.

    Article  CAS  PubMed  Google Scholar 

  259. Qiu S, Huang D, Yin D, Li F, Li X, Kung H-F, et al. Suppression of tumorigenicity by microRNA-138 through inhibition of EZH2-CDK4/6-pRb-E2F1 signal loop in glioblastoma multiforme. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis. 2013;1832(10):1697–707.

    Article  CAS  Google Scholar 

  260. Wang R, Zhang S, Chen X, Li N, Li J, Jia R, et al. EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol Cancer. 2018;17(1):1–12.

    Article  Google Scholar 

  261. Cao Y, Li X, Kong S, Shang S, Qi Y. CDK4/6 inhibition suppresses tumour growth and enhances the effect of temozolomide in glioma cells. J Cell Mol Med. 2020;24(9):5135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Bao XA, Peng Y, Shen J, Yang L. Sevoflurane inhibits progression of glioma via regulating the HMMR antisense RNA 1/microRNA-7/cyclin dependent kinase 4 axis. Bioengineered. 2021;12(1):7893–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Zhou X, Xia Y, Li L, Zhang G. MiR-101 inhibits cell growth and tumorigenesis of Helicobacter pylori related gastric cancer by repression of SOCS2. Cancer Biol Ther. 2015;16(1):160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Lyu J, Miao Y, Yu F, Chang C, Guo W, Zhu H. CDK4 and TERT amplification in head and neck mucosal melanoma. J Oral Pathol Med. 2021;50(10):971–8.

    Article  CAS  PubMed  Google Scholar 

  265. Hu Q, Peng J, Jiang L, Li W, Su Q, Zhang J, et al. Metformin as a senostatic drug enhances the anticancer efficacy of CDK4/6 inhibitor in head and neck squamous cell carcinoma. Cell Death Dis. 2020;11(10):1–16.

    Article  Google Scholar 

  266. Digiacomo G, Fumarola C, La Monica S, Bonelli MA, Cretella D, Alfieri R, et al. Simultaneous combination of the CDK4/6 inhibitor palbociclib with regorafenib induces enhanced anti-tumor effects in hepatocarcinoma cell lines. Front Oncol. 2020:1880.

  267. Bin X, Chen Y, Ma J, Tang R, Zhao Z, Wang K, et al. circ_0001588 induces the malignant progression of hepatocellular carcinoma by modulating miR-874/CDK4 signaling. J Immunol Res. 2021;2021.

  268. Guan Z, Tan J, Gao W, Li X, Yang Y, Li X, et al. Circular RNA hsa_circ_0016788 regulates hepatocellular carcinoma tumorigenesis through miR-486/CDK4 pathway. J Cell Physiol. 2019;234(1):500–8.

    Article  CAS  Google Scholar 

  269. Li W, Jiang H. Up-regulation of miR-498 inhibits cell proliferation, invasion and migration of hepatocellular carcinoma by targeting FOXO3. Clin Res Hepatol Gastroenterol. 2020;44(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  270. Zhang Y, Zhang H, Wu S. LncRNA-CCDC144NL-AS1 promotes the development of hepatocellular carcinoma by inducing WDR5 expression via sponging miR-940. J Hepatocell Carcinoma. 2021;8:333.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Zheng S-Z, Sun P, Wang J-P, Liu Y, Gong W, Liu J. MiR-34a overexpression enhances the inhibitory effect of doxorubicin on HepG2 cells. World J Gastroenterol. 2019;25(22):2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Furuta M, Kozaki K-I, Tanimoto K, Tanaka S, Arii S, Shimamura T, et al. The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma. PLoS ONE. 2013;8(3):e60155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Li M, Chen H, Xia L, Huang P. Circular RNA circSP3 promotes hepatocellular carcinoma growth by sponging microRNA-198 and upregulating cyclin-dependent kinase 4. Aging (Albany NY). 2021;13(14):18586.

    Article  CAS  Google Scholar 

  274. Wu S, Wu Z, Xu H, Zhang J, Gu W, Tan X, et al. miR-34a-5p inhibits the malignant progression of KSHV-infected SH-SY5Y cells by targeting c-fos. PeerJ. 2022;10: e13233.

    Article  PubMed  PubMed Central  Google Scholar 

  275. Böhm MJ, Marienfeld R, Jäger D, Mellert K, von Witzleben A, Brüderlein S, et al. Analysis of the CDK4/6 cell cycle pathway in leiomyosarcomas as a potential target for inhibition by palbociclib. Sarcoma. 2019;2019.

  276. Wright GM, Gimbrone NT, Sarcar B, Percy TR, Gordián ER, Kinose F, et al. CDK4/6 inhibition synergizes with inhibition of P21-Activated Kinases (PAKs) in lung cancer cell lines. PLoS ONE. 2021;16(6): e0252927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Qin Q, Li X, Liang X, Zeng L, Wang J, Sun L, et al. CDK4/6 inhibitor palbociclib overcomes acquired resistance to third-generation EGFR inhibitor osimertinib in non-small cell lung cancer (NSCLC). Thorac Cancer. 2020;11(9):2389–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Xing Z, Zhang Z, Gao Y, Zhang X, Kong X, Zhang J, et al. The lncRNA LINC01194/miR-486-5p axis facilitates malignancy in non-small cell lung cancer via regulating CDK4. Onco Targets Ther. 2020;13:3151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Xu X, Tao R, Sun L, Ji X. Exosome-transferred hsa_circ_0014235 promotes DDP chemoresistance and deteriorates the development of non-small cell lung cancer by mediating the miR-520a-5p/CDK4 pathway. Cancer Cell Int. 2020;20(1):1–15.

    Article  Google Scholar 

  280. Li D, Li D-Q, Liu D, Tang X-J. MiR-613 induces cell cycle arrest by targeting CDK4 in non-small cell lung cancer. Cell Oncol. 2016;39(2):139–47.

    Article  CAS  Google Scholar 

  281. Feng H, Ge F, Du L, Zhang Z, Liu D. MiR-34b-3p represses cell proliferation, cell cycle progression and cell apoptosis in non-small-cell lung cancer (NSCLC) by targeting CDK4. J Cell Mol Med. 2019;23(8):5282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Wang Q, PM K. CircRNA_001010 adsorbs miR-5112 in a sponge form to promote proliferation and metastasis of non-small cell lung cancer (NSCLC). Eur Rev Med Pharmacol Sci. 2020;24(8):4271–80.

    CAS  PubMed  Google Scholar 

  283. Qin Y, Zhou X, Huang C, Li L, Liu H, Liang N, et al. Lower miR-340 expression predicts poor prognosis of non-small cell lung cancer and promotes cell proliferation by targeting CDK4. Gene. 2018;675:278–84.

    Article  CAS  PubMed  Google Scholar 

  284. Shao Y, Shen Y-Q, Li Y-L, Liang C, Zhang B-J, Lu S-D, et al. Direct repression of the oncogene CDK4 by the tumor suppressor miR-486-5p in non-small cell lung cancer. Oncotarget. 2016;7(23):34011.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Sun C-C, Li S-J, Li D-J. Hsa-miR-134 suppresses non-small cell lung cancer (NSCLC) development through down-regulation of CCND1. Oncotarget. 2016;7(24):35960.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Zhou H, Huang Z, Chen X, Chen S. miR-98 inhibits expression of TWIST to prevent progression of non-small cell lung cancers. Biomed Pharmacother. 2017;89:1453–61.

    Article  CAS  PubMed  Google Scholar 

  287. Jin J-J, Liu Y-H, Si J-M, Ni R, Wang J. Overexpression of miR-1290 contributes to cell proliferation and invasion of non small cell lung cancer by targeting interferon regulatory factor 2. Int J Biochem Cell Biol. 2018;95:113–20.

    Article  CAS  PubMed  Google Scholar 

  288. Yu H, Chen Y, Jiang P. Circular RNA HIPK3 exerts oncogenic properties through suppression of miR-124 in lung cancer. Biochem Biophys Res Commun. 2018;506(3):455–62.

    Article  CAS  PubMed  Google Scholar 

  289. Wei F, Wang M, Li Z, Wang Y, Zhou Y. miR‑593 inhibits proliferation and invasion and promotes apoptosis in non‑small cell lung cancer cells by targeting SLUG‑associated signaling pathways Corrigendum in/https://doi.org/10.3892/mmr. 2021.12555. Mol Med Rep. 2019;20(6):5172–82.

  290. Sherman EJ, Mitchell DC, Garner AL. The RNA-binding protein SART3 promotes miR-34a biogenesis and G1 cell cycle arrest in lung cancer cells. J Biol Chem. 2019;294(46):17188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Cheng R, Zhang G, Bai Y, Zhang F, Zhang G. LncRNA SENCR promotes cell proliferation and progression in non-small-cell lung cancer cells via sponging miR-1-3p. Cell Cycle. 2021;20(14):1402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Du B, Wang Z, Zhang X, Feng S, Wang G, He J, et al. MicroRNA-545 suppresses cell proliferation by targeting cyclin D1 and CDK4 in lung cancer cells. PLoS ONE. 2014;9(2): e88022.

    Article  PubMed  PubMed Central  Google Scholar 

  293. Sun H, Han X, Zhong M, Yu D. Linc00703 suppresses non-small cell lung cancer progression by modulating cyclinD1/CDK4 expression. Eur Rev Med Pharmacol Sci. 2020;24(11):6131–8.

    PubMed  Google Scholar 

  294. Zhang S, Wenjia X, Gaochao D, Weizhang X, Ming L, Lin X. Cyclic RNA molecule circ_0007766 promotes the proliferation of lung adenocarcinoma cells by up-regulating the expression of Cyclin D1/CyclinE1/CDK4. Zhongguo Fei Ai Za Zhi. 2019;22(5).

  295. Lukoseviciute M, Maier H, Poulou-Sidiropoulou E, Rosendahl E, Holzhauser S, Dalianis T, et al. Targeting PI3K, FGFR, CDK4/6 signaling pathways together with cytostatics and radiotherapy in two medulloblastoma Cell lines. Front Oncol. 2021;11.

  296. Zhao L, Chen T, Tang X, Li S, Liang R, Wang Y. Medulloblastoma malignant biological behaviors are associated with HOTAIR/miR-483–3p/CDK4 axis. Ann Transl Med. 2020;8(14):886.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Yang Y, Cui H, Wang X. Downregulation of EIF5A2 by miR-221-3p inhibits cell proliferation, promotes cell cycle arrest and apoptosis in medulloblastoma cells. Biosci Biotechnol Biochem. 2019;83(3):400–8.

    Article  CAS  PubMed  Google Scholar 

  298. AbuHammad S, Cullinane C, Martin C, Bacolas Z, Ward T, Chen H, et al. Regulation of PRMT5–MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma. Proc Natl Acad Sci. 2019;116(36):17990–8000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Santiappillai NT, Abuhammad S, Slater A, Kirby L, McArthur GA, Sheppard KE, et al. CDK4/6 inhibition reprograms mitochondrial metabolism in BRAFV600 melanoma via a p53 dependent pathway. Cancers. 2021;13(3):524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Posch C, Sanlorenzo M, Ma J, Kim ST, Zekhtser M, Ortiz-Urda S. MEK/CDK4, 6 co-targeting is effective in a subset of NRAS, BRAF and ‘wild type’melanomas. Oncotarget. 2018;9(79):34990.

    Article  PubMed  PubMed Central  Google Scholar 

  301. Kollmann K, Briand C, Bellutti F, Schicher N, Blunder S, Zojer M, et al. The interplay of CDK4 and CDK6 in melanoma. Oncotarget. 2019;10(14):1346.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Teh JL, Erkes DA, Cheng PF, Tiago M, Wilski NA, Field CO, et al. Activation of CD8+ T cells contributes to anti-tumor effects of CDK4/6 inhibitors plus MEK inhibitors. Cancer Immunol Res. 2020;8(9):1114–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Hayes TK, Luo F, Cohen O, Goodale AB, Lee Y, Pantel S, et al. A functional landscape of resistance to MEK1/2 and CDK4/6 inhibition in NRAS-mutant melanoma. Can Res. 2019;79(9):2352–66.

    Article  CAS  Google Scholar 

  304. Bian D, Wu Y, Song G. Novel circular RNA, hsa_circ_0025039 promotes cell growth, invasion and glucose metabolism in malignant melanoma via the miR-198/CDK4 axis. Biomed Pharmacother. 2018;108:165–76.

    Article  CAS  PubMed  Google Scholar 

  305. Georgantas RW III, Streicher K, Luo X, Greenlees L, Zhu W, Liu Z, et al. Micro RNA-206 induces G 1 arrest in melanoma by inhibition of CDK 4 and C yclin D. Pigment Cell Melanoma Res. 2014;27(2):275–86.

    Article  CAS  PubMed  Google Scholar 

  306. Zhang M, Zhao X, Cai X, Wang P, Yu M, Wei Z. Knockdown of long non-coding RNA plasmacytoma variant translocation 1 inhibits cell proliferation while promotes cell apoptosis via regulating miR-486-mediated CDK4 and BCAS2 in multiple myeloma. Ir J Med Sci (1971). 2020;189(3):825–34.

    Article  CAS  Google Scholar 

  307. Cao Y, Shi X, Liu Y, Xu R, Ai Q. MicroRNA-338-3p inhibits proliferation and promotes apoptosis of multiple myeloma cells through targeting Cyclin-dependent kinase 4. Oncol Res. 2018;27(1):117.

    Article  PubMed  PubMed Central  Google Scholar 

  308. Wu H, Xia L, Xu H. Role of FUS-CHOP in myxoid liposarcoma via miR-486/CDK4 axis. Biochem Genet. 2021:1–12.

  309. Jiang Q, Zhang Y, Zhao M, Li Q, Chen R, Long X, et al. miR-16 induction after CDK4 knockdown is mediated by c-Myc suppression and inhibits cell growth as well as sensitizes nasopharyngeal carcinoma cells to chemotherapy. Tumor Biol. 2016;37(2):2425–33.

    Article  CAS  Google Scholar 

  310. Lv LY, Wang YZ, Zhang Q, Zang HR, Wang XJ. miR-539 induces cell cycle arrest in nasopharyngeal carcinoma by targeting cyclin-dependent kinase 4. Cell Biochem Funct. 2015;33(8):534–40.

    Article  PubMed  Google Scholar 

  311. Wang C, Mao C, Lai Y, Cai Z, Chen W. MMP1 3′ UTR facilitates the proliferation and migration of human oral squamous cell carcinoma by sponging miR-188-5p to up-regulate SOX4 and CDK4. Mol Cell Biochem. 2021;476(2):785–96.

    Article  CAS  PubMed  Google Scholar 

  312. Kang Y, Zhang Y, Sun Y. MicroRNA-198 suppresses tumour growth and metastasis in oral squamous cell carcinoma by targeting CDK4. Int J Oncol. 2021;59(1):1–13.

    Article  Google Scholar 

  313. Zhang W, Hong W. Upregulation of miR-519d-3p inhibits viability, proliferation, and G1/S cell cycle transition of oral squamous cell carcinoma cells through targeting CCND1. Cancer Biother Radiopharmac. 2020.

  314. Shang A, Lu W-Y, Yang M, Zhou C, Zhang H, Cai Z-X, et al. miR-9 induces cell arrest and apoptosis of oral squamous cell carcinoma via CDK 4/6 pathway. Artif Cells Nanomed Biotechnol. 2018;46(8):1754–62.

    CAS  PubMed  Google Scholar 

  315. Wang W-T, Qi Q, Zhao P, Li C-Y, Yin X-Y, Yan R-B. miR-590-3p is a novel microRNA which suppresses osteosarcoma progression by targeting SOX9. Biomed Pharmacother. 2018;107:1763–9.

    Article  CAS  PubMed  Google Scholar 

  316. Jia F, Zhang Z, Zhang X. MicroRNA-338-3p inhibits tumor growth and metastasis in osteosarcoma cells by targeting RUNX2/CDK4 and inhibition of MAPK pathway. J Cell Biochem. 2019;120(4):6420–30.

    Article  CAS  PubMed  Google Scholar 

  317. Cheng S, Zheng J, Liu X, Shi J, Gong F, Zhang X, et al. Knockdown of 91 H suppresses the tumorigenesis of osteosarcoma via inducing methylation of CDK4 promoter. Technol Cancer Res Treat. 2021;20:1533033821990006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Zhang Q-F, Li J, Jiang K, Wang R, Ge J-L, Yang H, et al. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner. Theranostics. 2020;10(23):10619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Liu C, Huang Y, Cui Y, Zhou J, Qin X, Zhang L, et al. The immunological role of CDK4/6 and potential mechanism exploration in ovarian cancer. Front Immunol. 2021;12.

  320. Ho C-M, Chang T-H, Yen T-L, Hong K-J, Huang S-H. Collagen type VI regulates the CDK4/6-p-Rb signaling pathway and promotes ovarian cancer invasiveness, stemness, and metastasis. Am J Cancer Res. 2021;11(3):668.

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Liu G, Sun Y, Ji P, Li X, Cogdell D, Yang D, et al. MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6–FOXM1 axis in ovarian cancer. J Pathol. 2014;233(3):308–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Salvador-Barbero B, Álvarez-Fernández M, Zapatero-Solana E, El Bakkali A, del Camino MM, López-Casas PP, et al. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in pancreatic adenocarcinoma. Cancer Cell. 2020;37(3):340-53. E6.

    Article  CAS  PubMed  Google Scholar 

  323. Zhang B, Li D, Jin X, Zhang K. The CDK4/6 inhibitor PD0332991 stabilizes FBP1 by repressing MAGED1 expression in pancreatic ductal adenocarcinoma. Int J Biochem Cell Biol. 2020;128: 105859.

    Article  CAS  PubMed  Google Scholar 

  324. Willobee BA, Gaidarski AA, Dosch AR, Castellanos JA, Dai X, Mehra S, et al. Combined blockade of MEK and CDK4/6 pathways induces senescence to improve survival in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2021;20(7):1246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Huang F, Tang J, Zhuang X, Zhuang Y, Cheng W, Chen W, et al. MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS ONE. 2014;9(2): e87897.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Wu C, Ma L, Wei H, Nie F, Ning J, Jiang T. MiR-1256 inhibits cell proliferation and cell cycle progression in papillary thyroid cancer by targeting 5-hydroxy tryptamine receptor 3A. Hum Cell. 2020;33(3):630–40.

    Article  CAS  PubMed  Google Scholar 

  327. Li S, Wang C, Yu X, Wu H, Hu J, Wang S, et al. miR-3619-5p inhibits prostate cancer cell growth by activating CDKN1A expression. Oncol Rep. 2017;37(1):241–8.

    Article  PubMed  Google Scholar 

  328. Wei W-R, Zeng G-J, Liu C, Zou B-W, Li L. Overexpression of miR-96 promotes cell proliferation by targeting FOXF2 in prostate cancer. Int J Clin Exp Pathol. 2017;10(7):7596.

    PubMed  PubMed Central  Google Scholar 

  329. Fu X, Wang D, Shu T, Cui D, Fu Q. LncRNA NR2F2-AS1 positively regulates CDK4 to promote cancer cell proliferation in prostate carcinoma. Aging Male. 2020;23(5):1073–9.

    Article  PubMed  Google Scholar 

  330. Shi X, Li H, Shi A, Yao H, Ke K, Dong C, et al. Discovery of rafoxanide as a dual CDK4/6 inhibitor for the treatment of skin cancer. Oncol Rep. 2018;40(3):1592–600.

    CAS  PubMed  Google Scholar 

  331. Ohara M, Saito K, Kageyama K, Terai M, Cheng H, Aplin AE, et al. Dual targeting of CDK4/6 and cMET in metastatic uveal melanoma. Cancers. 2021;13(5):1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Teh JL, Purwin TJ, Han A, Chua V, Patel P, Baqai U, et al. Metabolic adaptations to MEK and CDK4/6 cotargeting in uveal melanoma. Mol Cancer Ther. 2020;19(8):1719–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Matsuo H, Nakatani K, Harata Y, Higashitani M, Ito Y, Inagami A, et al. Efficacy of a combination therapy targeting CDK4/6 and autophagy in a mouse xenograft model of t (8; 21) acute myeloid leukemia. Biochem Biophys Rep. 2021;27: 101099.

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Sinclair WD, Cui X. The effects of HER2 on CDK4/6 activity in breast cancer. Clin Breast Cancer. 2022;22(3):e278–85.

    Article  CAS  PubMed  Google Scholar 

  335. Chen J, Wu W, He X, Jia L, Yang J, Si X, et al. Exosomal miR-122-5p is related to the degree of myelosuppression caused by chemotherapy in patients with colorectal cancer. Cancer Manage Res. 2021;13:8329.

    Article  CAS  Google Scholar 

  336. Decker T, Seifert R, Bichler M, Birtel A, Fischer G, Nonnenbroich C, et al. Elective discontinuation of CDK4/6 inhibitors in patients with metastatic hormone receptor-positive, her-2-negative breast cancer: a retrospective single-center experience. Oncol Res Treat. 2021;44(9):443–9.

    Article  CAS  PubMed  Google Scholar 

  337. Han Y, Wang J, Wang Z, Xu B. Comparative efficacy and safety of CDK4/6 and PI3K/AKT/mTOR inhibitors in women with hormone receptor-positive, HER2-negative metastatic breast cancer: a systematic review and network meta-analysis. Curr Probl Cancer. 2020;44(6): 100606.

    Article  PubMed  Google Scholar 

  338. Lin M, Chen Y, Jin Y, Hu X, Zhang J. Comparative overall survival of CDK4/6 inhibitors plus endocrine therapy vs. endocrine therapy alone for hormone receptor-positive, HER2-negative metastatic breast cancer. J Cancer. 2020;11(24):7127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Collins JM, Nordstrom BL, McLaurin KK, Dalvi TB, McCutcheon SC, Bennett JC, et al. A real-world evidence study of CDK4/6 inhibitor treatment patterns and outcomes in metastatic breast cancer by germline BRCA mutation status. Oncol Ther. 2021;9(2):575–89.

    Article  PubMed  PubMed Central  Google Scholar 

  340. Palleschi M, Maltoni R, Ravaioli S, Vagheggini A, Mannozzi F, Fanini F, et al. Ki67 and PR in patients treated with CDK4/6 inhibitors: a real-world experience. Diagnostics. 2020;10(8):573.

    Article  CAS  PubMed Central  Google Scholar 

  341. Cook MM, Al Rabadi L, Kaempf AJ, Saraceni MM, Savin MA, Mitri ZI. Everolimus plus exemestane treatment in patients with metastatic hormone receptor-positive breast cancer previously treated with CDK4/6 inhibitor therapy. Oncologist. 2021;26(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  342. Ding W, Li Z, Wang C, Ruan G, Chen L, Tu C. The CDK4/6 inhibitor in HR-positive advanced breast cancer: a systematic review and meta-analysis. Medicine. 2018;97(20):e10746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Nguyen LV, Searle K, Jerzak KJ. Central nervous system-specific efficacy of CDK4/6 inhibitors in randomized controlled trials for metastatic breast cancer. Oncotarget. 2019;10(59):6317.

    Article  PubMed  PubMed Central  Google Scholar 

  344. Del Re M, Crucitta S, Lorenzini G, De Angelis C, Diodati L, Cavallero D, et al. PI3K mutations detected in liquid biopsy are associated to reduced sensitivity to CDK4/6 inhibitors in metastatic breast cancer patients. Pharmacol Res. 2021;163: 105241.

    Article  PubMed  Google Scholar 

  345. Desnoyers A, Nadler MB, Kumar V, Saleh R, Amir E. Comparison of treatment-related adverse events of different Cyclin-dependent kinase 4/6 inhibitors in metastatic breast cancer: a network meta-analysis. Cancer Treat Rev. 2020;90: 102086.

    Article  CAS  PubMed  Google Scholar 

  346. Daniell KM, Bardia A, Sun F, Roberts SA, Brunelle CL, Gillespie TC, et al. Incidence of peripheral edema in patients receiving PI3K/mTOR/CDK4/6 inhibitors for metastatic breast cancer. Breast Cancer Res Treat. 2019;175(3):649–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the clinical Research Development Unit (CRDU) of Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran for their support, cooperation and assistance throughout the period of study.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

Authors

Contributions

MT and AB designed and supervised the study. SGF and NG wrote the draft and revised it. TK, NAD, BMH and PD collected the data and designed the figures and tables. All the authors read the submitted version and approved it.

Corresponding authors

Correspondence to Mohammad Taheri, Aria Baniahmad or Nader Akbari Dilmaghani.

Ethics declarations

Ethics approval and consent to Participant

Not applicable.

Consent of publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafouri-Fard, S., Khoshbakht, T., Hussen, B.M. et al. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 22, 325 (2022). https://doi.org/10.1186/s12935-022-02747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12935-022-02747-z

Keywords