Smalheiser NR, Schwartz NB. Cranin: A laminin-binding protein of cell membranes. ProcNatl AcademySciUSA. 1987;84(18):6457–61. https://doi.org/10.1073/pnas.84.18.6457.
Article
CAS
Google Scholar
Durbeej M. Laminins. Cell Tissue Res. 2010;339(1):259–68. https://doi.org/10.1007/s00441-009-0838-2.
Article
CAS
Google Scholar
Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992;355(6362):696–702. https://doi.org/10.1038/355696a0.
Article
CAS
Google Scholar
Holt KH, Crosbie RH, Venzke DP, Campbell KP. Biosynthesis of dystroglycan: Processing of a precursor propeptide. FEBS Lett. 2000;468(1):79–83. https://doi.org/10.1016/s0014-5793(00)01195-9.
Article
CAS
Google Scholar
Akhavan A, Crivelli SN, Singh M, Lingappa VR, Muschler JL. SEA domain proteolysis determines the functional composition of dystroglycan. FASEB J. 2008;22(2):612–21. https://doi.org/10.1096/fj.07-8354com.
Article
CAS
Google Scholar
Oppizzi ML, Akhavan A, Singh M, Fata JE, Muschler JL. Nuclear translocation of β-dystroglycan reveals a distinctive trafficking pattern of autoproteolyzed mucins. Traffic. 2008;9(12):2063–72. https://doi.org/10.1111/j.1600-0854.2008.00822.x.
Article
CAS
Google Scholar
Ibraghimov-Beskrovnaya O, Milatovich A, Ozcelik T, Yang B, Koepnick K, Francke U, Campbell KP. Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum Mol Genet. 1993;2(10):1651–7. https://doi.org/10.1093/hmg/2.10.1651.
Article
CAS
Google Scholar
Durbeej M, Larsson E, Ibraghimov-Beskrovnaya O, Roberds SL, Campbell KP, Ekblom P. Non-muscle α-dystroglycan is involved in epithelial development. J Cell Biol. 1995;130(1):79–91. https://doi.org/10.1083/jcb.130.1.79.
Article
CAS
Google Scholar
Durbeej M, Henry MD, Ferletta M, Campbell KP, Ekblom P. Distribution of dystroglycan in normal adult mouse tissues. J Histochem Cytochem. 1998;46(4):449–57. https://doi.org/10.1177/002215549804600404.
Article
CAS
Google Scholar
Durbeej M, Campbell KP. Biochemical characterization of the epithelial dystroglycan complex. J Biol Chem. 1999;274(37):26609–16. https://doi.org/10.1074/jbc.274.37.26609.
Article
CAS
Google Scholar
Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991;66(6):1121–31. https://doi.org/10.1016/0092-8674(91)90035-w.
Article
CAS
Google Scholar
Brancaccio A, Schulthess T, Gesemann M, Engel J. Electron microscopic evidence for a mucin-like region in chick muscle α-dystroglycan. FEBS Lett. 1995;368(1):139–42. https://doi.org/10.1016/0014-5793(95)00628-m.
Article
CAS
Google Scholar
Brancaccio A, Schulthess T, Gesemann M, Engel J. The N-terminal region of α-dystroglycan is an autonomous globular domain. Eur J Biochem. 1997;246(1):166–72. https://doi.org/10.1111/j.1432-1033.1997.00166.x.
Article
CAS
Google Scholar
Matsumura K, Yamada H, Saito F, Sunada Y, Shimizu T. The role of dystroglycan, a novel receptor of laminin and agrin, in cell differentiation. Histol Histopathol. 1997;12(1):195–203. https://doi.org/10.14670/HH-12.195.
Article
CAS
Google Scholar
Cohn RD. Dystroglycan: important player in skeletal muscle and beyond. Neuromuscul Disord. 2005;15(3):207–17. https://doi.org/10.1016/j.nmd.2004.11.005.
Article
Google Scholar
Barresi R, Campbell KP. Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci. 2006;119(2):199–207. https://doi.org/10.1242/jcs.02814.
Article
CAS
Google Scholar
Winder SJ. The complexities of dystroglycan. Trends Biochem Sci. 2001;26(2):118–24. https://doi.org/10.1016/s0968-0004(00)01731-x.
Article
CAS
Google Scholar
Ervasti JM, Sonnemann KJ. Biology of the striated muscle dystrophinglycoprotein complex. Int Rev Cytol. 2008;265:191–225. https://doi.org/10.1016/S0074-7696(07)65005-0.
Article
CAS
Google Scholar
Dobson CM, Hempel SJ, Stalnaker SH, Stuart R, Wells L. O-Mannosylation and human disease. Cell Mol Life Sci. 2013;70(16):2849–57. https://doi.org/10.1007/s00018-012-1193-0.
Article
CAS
Google Scholar
Ervasti JM, Campbell KP. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol. 1993;122(4):809–23. https://doi.org/10.1083/jcb.122.4.809.
Article
CAS
Google Scholar
Campbell KP. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell. 1995;80(5):675–9. https://doi.org/10.1016/0092-8674(95)90344-5.
Article
CAS
Google Scholar
Huang X, Poy F, Zhang R, Joachimiak A, Sudol M, Eck MJ. Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan. Nat Struct Biol. 2000;7(8):634–8. https://doi.org/10.1038/77923.
Article
CAS
Google Scholar
Samwald M. Dystroglycan in the nervous system. Nat Preced. 2007;2:1–1. https://doi.org/10.1038/npre.2007.196.1.
Article
Google Scholar
Sato S, Omori Y, Katoh K, Kondo M, Kanagawa M, Miyata K, Funabiki K, Koyasu T, Kaimura N, Miyoshi T, Sawai H, Kobayashi K, Tani A, Toda T, Usukura J, Tano Y, Fujikado T, Furukawa T. Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat Neurosci. 2008;11(8):923–31. https://doi.org/10.1038/nn.2160.
Article
CAS
Google Scholar
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mechan. 2018;11(12):dmm035931. https://doi.org/10.1242/dmm.035931.
Article
CAS
Google Scholar
Bozzi M, Morlacchi S, Bigotti MG, Sciandra F, Brancaccio A. Functional diversity of dystroglycan. Matrix Biol. 2009;28(4):179–87. https://doi.org/10.1016/j.matbio.2009.03.003.
Article
CAS
Google Scholar
Montanaro F, Martin PT. Defective glycosylation of dystroglycan in muscular dystrophy and cancer. In: Vidal C, editor. Post-translational modifications in Health and Disease. Berlin: Springer; 2011.
Google Scholar
Bello V, Moreau N, Sirour C, Hidalgo M, Buisson N, Darribère T. The dystroglycan: nestled in an adhesome during embryonic development. Dev Biol. 2015;401(1):132–42. https://doi.org/10.1016/j.ydbio.2014.07.006.
Article
CAS
Google Scholar
Endo T. Glycobiology of α-dystroglycan and muscular dystrophy. J BioChem. 2015;157(1):1–12. https://doi.org/10.1093/jb/mvu066.
Article
CAS
Google Scholar
Ragni E, Lommel M, Moro M, Crosti M, Lavazza C, Parazzi V, Saredi S, Strahl S, Lazzari L. Protein O-mannosylation is crucial for human mesenchymal stem cells fate. Cell Mol Life Sci. 2016;73(2):445–58. https://doi.org/10.1007/s00018-015-2007-y.
Article
CAS
Google Scholar
Kanagawa M, Toda T. Ribitol-phosphate—a newly identified posttranslational glycosylation unit in mammals: structure, modification enzymes and relationship to human diseases. J BioChem. 2018;163(5):359–69. https://doi.org/10.1093/jb/mvy020.
Article
CAS
Google Scholar
Endo T. Mammalian O-mannosyl glycans: Biochemistry and glycopathology. Proceedings of the Japan Academy. Series B, Physical and Biological Sciencies. J Biochem 2019; 95(1):39–51. https://doi.org/10.2183/pjab.95.004
Hewitt JE. Abnormal glycosylation of dystroglycan in human genetic disease. Biochim Biophys Acta. 2009;1792(9):853–61. https://doi.org/10.1016/j.bbadis.2009.06.003.
Article
CAS
Google Scholar
Wells L. The O-mannosylation pathway: glycosyltransferases and proteins implicated in congenital muscular dystrophy. J Biol Chem. 2013;288(10):6930–5. https://doi.org/10.1074/jbc.R112.438978.
Article
CAS
Google Scholar
Sheikh MO, Halmo SM, Wells L. Recent advancements in understanding mammalian O-mannosylation. Glycobiology. 2017;27(9):806–19. https://doi.org/10.1093/glycob/cwx062.
Article
CAS
Google Scholar
Riemersma M, Sandrock J, Boltje TJ, Büll C, Heise T, Ashikov A, Adema GJ, van Bokhoven H, Lefeber DJ. Disease mutations in CMP-sialic acid transporter SLC35A1 result in abnormal α-dystroglycan O-mannosylation, independent from sialic acid. Hum Mol Genet. 2015;24(8):2241–6. https://doi.org/10.1093/hmg/ddu742.
Article
CAS
Google Scholar
Osborn DPS, Pond HL, Mazaheri N, Dejardin J, Munn CJ, Mushref K, Cauley ES, Moroni I, Pasanisi MB, Sellars EA, Hill RS, Partlow JN, Willaert RK, Bharj J, Malamiri RA, Galehdari H, Shariati G, Maroofian R, Mora M, Swan LE, Voit T, Conti FJ, Jamshidi Y, Manzini MC. Mutations in INPP5K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy. Am J Hum Genet. 2017;100(3):537–45. https://doi.org/10.1016/j.ajhg.2017.01.019.
Article
CAS
Google Scholar
Larson AA, Baker PR, Milev MP, Press CA, Sokol RJ, Cox MO, Lekostaj JK, Stence AA, Bossler AD, Mueller JM, Prematilake K, Tadjo TF, Williams CA, Sacher M, Moore SA. TRAPPC11 and GOSR2 mutations associate with hypoglycosylation of α-dystroglycan and muscular dystrophy. Skelet Muscle. 2018;8(1):17. https://doi.org/10.1186/s13395-018-0163-0.
Article
CAS
Google Scholar
Yoshida-Moriguchi T, Campbell KP. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology. 2015;25(7):702–13. https://doi.org/10.1093/glycob/cwv021.
Article
CAS
Google Scholar
Willer T, Inamori K, Venzke D, Harvey C, Morgensen G, Hara Y, Beltrán Valero de Bernabé D, Yu L, Wright KM, Campbell K. The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. Elife. 2014;3:e03941. https://doi.org/10.7554/eLife.03941.
Article
Google Scholar
Schessl J, Zou Y, Bönnemann CG. Congenital muscular dystrophies and the extracellular matrix. Semin Pediatr Neurol. 2006;13(2):80–9. https://doi.org/10.1016/j.spen.2006.06.003.
Article
Google Scholar
Reed UC. Congenital muscular dystrophy. Part I: a review of phenotypical and diagnostic aspects. Arq Neuropsiquiatr. 2009;67(1):144–68. https://doi.org/10.1590/s0004-282x2009000100038.
Article
Google Scholar
Godfrey C, Foley AR, Clement E, Muntoni F. Dystroglycanopathies: coming into focus. Curr Opin Genet Dev. 2011;21(3):278–85. https://doi.org/10.1016/j.gde.2011.02.001.
Article
CAS
Google Scholar
Mercuri E, Muntoni F. The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol. 2012;72(1):9–17. https://doi.org/10.1002/ana.23548.
Article
Google Scholar
Esser AK, Cohen MB, Henry MD. Dystroglycan is not required for maintenance of the luminal epithelial basement membrane or cell polarity in the mouse prostate. Prostate. 2010;70(7):777–87. https://doi.org/10.1002/pros.21110.
Article
CAS
Google Scholar
Henry MD, Campbell KP. A role for dystroglycan in basement membrane assembly. Cell. 1998;95(6):859–70. https://doi.org/10.1016/s0092-8674(00)81708-0.
Article
CAS
Google Scholar
Schröder JE, Tegeler MR, Großhans U, Porten E, Blank M, Lee J, Esapa C, Blake DJ, Kröger S. Dystroglycan regulates structure, proliferation and differentiation of neuroepithelial cells in the developing vertebrate CNS. Dev Biol. 2007;307(1):62–78. https://doi.org/10.1016/j.ydbio.2007.04.020.
Article
CAS
Google Scholar
McClenahan FK, Sharma H, Shan X, Eyermann C, Colognato H. Dystroglycan suppresses Notch to regulate stem cell niche structure and function in the developing postnatal subventricular zone. Dev Cell. 2016;38(5):548–66. https://doi.org/10.1016/j.devcel.2016.07.017.
Article
CAS
Google Scholar
Rambukkana A, Yamada H, Zanazzi G, Mathus T, Salzer JL, Yurchenco PD, Campbell KP, Fischetti VA. Role of α-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science. 1998;282(5396):2076–9. https://doi.org/10.1126/science.282.5396.2076.
Article
CAS
Google Scholar
Jin S, Kim S, Lee S. M. leprae interacts with the human epidermal keratinocytes, neonatal (HEKn) via the binding of laminin-5 with α-dystroglycan, integrin-β1, or -β4. PLoS Negl Trop Dis. 2019;13(6):e0007339. https://doi.org/10.1371/journal.pntd.0007339.
Article
CAS
Google Scholar
Spence HJ, Dhillon AS, James M, Winder SJ. Dystroglycan, a scaffold for the ERK–MAP kinase cascade. EMBO Rep. 2004;5(5):484–9. https://doi.org/10.1038/sj.embor.7400140.
Article
CAS
Google Scholar
Moore CJ, Winder SJ. Dystroglycan versatility in cell adhesion: a tale of multiple motifs. Cell Commun Signal. 2010;8:3–15. https://doi.org/10.1186/1478-811X-8-3.
Article
CAS
Google Scholar
Moore CJ, Winder SJ. The inside and out of dystroglycan post-translational modification. Neuromuscul Disord. 2012;22(11):959–65. https://doi.org/10.1016/j.nmd.2012.05.016.
Article
Google Scholar
Martínez-Vieyra IA, Vásquez-Limeta A, González-Ramírez R, Morales-Lázaro SL, Mondragón M, Mondragón R, Ortega A, Winder SJ, Cisneros B. A role for β-dystroglycan in the organization and structure of the nucleus in myoblasts. Biochim et Biophys Acta - Mol Cell Res. 2013;1833(3):698–711. https://doi.org/10.1016/j.bbamcr.2012.11.019.
Article
CAS
Google Scholar
Vélez-Aguilera G, de Dios Gómez-López J, Jiménez-Gutiérrez GE, Vásquez-Limeta A, Laredo-Cisneros MS, Gómez P, Winder SJ, Cisneros B. Control of nuclear β-dystroglycan content is crucial for the maintenance of nuclear envelope integrity and function. Biochim et Biophys Acta - Mol Cell Res. 2018;1865(2):406–20. https://doi.org/10.1016/j.bbamcr.2017.11.013.
Article
CAS
Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Article
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Article
CAS
Google Scholar
Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432(7015):332–7. https://doi.org/10.1038/nature03096.
Article
CAS
Google Scholar
Cheng N, Chytil A, Shyr Y, Joly A, Moses HL. Transforming growth factor-β signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Mol Cancer Res. 2008;6(10):1521–33. https://doi.org/10.1158/1541-7786.MCR-07-2203.
Article
CAS
Google Scholar
Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2(2):103–12. https://doi.org/10.1016/s1535-6108(02)00102-2.
Article
CAS
Google Scholar
Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. 2000;1(1):72–6. https://doi.org/10.1038/35036093.
Article
CAS
Google Scholar
Blasco MA. Telomeres and human disease: Ageing, cancer and beyond. Nat Rev Genet. 2005;6(8):611–22. https://doi.org/10.1038/nrg1656.
Article
CAS
Google Scholar
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90. https://doi.org/10.1016/j.cell.2009.11.007.
Article
CAS
Google Scholar
Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4(2):118–32. https://doi.org/10.1038/nrc1276.
Article
CAS
Google Scholar
Sgambato A, Brancaccio A. The dystroglycan complex: from biology to cancer. J Cell Physiol. 2005;205(2):163–9. https://doi.org/10.1002/jcp.20411.
Article
CAS
Google Scholar
Calogero A, Pavoni E, Gramaglia T, D’Amati G, Ragona G, Brancaccio A, Petrucci TC. Altered expression of α-dystroglycan subunit in human gliomas. Cancer Biol Ther. 2006;5(4):441–8. https://doi.org/10.4161/cbt.5.4.2546.
Article
CAS
Google Scholar
Muschler J, Levy D, Boudreau R, Henry M, Campbell KP, Bissell MJ. A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. Cancer Res. 2002;62(23):7102–9.
CAS
Google Scholar
Weir ML, Oppizzi ML, Henry MD, Onishi A, Campbell KP, Bissell MJ, Muschler JL. Dystroglycan loss disrupts polarity and β-casein induction in mammary epithelial cells by perturbing laminin anchoring. J Cell Sci. 2006;119(19):4047–58. https://doi.org/10.1242/jcs.03103.
Article
CAS
Google Scholar
Beltrán-Valero de Bernabé D, Inamori KI, Yoshida-Moriguchi T, Weydert CJ, Harper HA, Willer T, Henry MD, Campbell KP. Loss of α-dystroglycan laminin binding in epithelium-derived cancers is caused by silencing of LARGE. J Biol Chem. 2009;284(17):11279–84. https://doi.org/10.1074/jbc.C900007200.
Article
CAS
Google Scholar
Brennan PA, Jing J, Ethunandan M, Górecki D. Dystroglycan complex in cancer. Eur J Surg Oncol. 2004;30(6):589–92. https://doi.org/10.1016/j.ejso.2004.03.014.
Article
CAS
Google Scholar
Bao X, Fukuda M. A tumor suppressor function of laminin-binding α-dystroglycan. Methods Enzymol. 2010;479:387–96. https://doi.org/10.1016/S0076-6879(10)79022-4.
Article
CAS
Google Scholar
Ilsley JL, Sudol M, Winder SJ. The interaction of dystrophin with β-dystroglycan is regulated by tyrosine phosphorylation. Cell Signal. 2001;13(9):625–32. https://doi.org/10.1016/s0898-6568(01)00188-7.
Article
CAS
Google Scholar
Sotgia F, Bonuccelli G, Bedford M, Brancaccio A, Mayer U, Wilson MT, Campos-Gonzalez R, Brooks JW, Sudol M, Lisanti MP. Localization of phospho-β-dystroglycan (pY892) to an intracellular vesicular compartment in cultured cells and skeletal muscle fibers in vivo. Biochemistry. 2003;42(23):7110–23. https://doi.org/10.1021/bi0271289.
Article
CAS
Google Scholar
Gracida-Jiménez V, Mondragón-González R, Vélez-Aguilera G, Vásquez-Limeta A, Laredo-Cisneros MS, Gómez-López JD, Vaca L, Gourlay SC, Jacobs LA, Winder SJ, Cisneros B. Retrograde trafficking of β-dystroglycan from the plasma membrane to the nucleus. Sci Rep. 2017;7(1):9906. https://doi.org/10.1038/s41598-017-09972-x.
Article
CAS
Google Scholar
Ahsan MS, Yamazaki M, Maruyama S, Kobayashi T, Ida-Yonemochi H, Hasegawa M, Henry-Ademola A, Cheng J, Saku T. Differential expression of perlecan receptors, α-dystroglycan and integrin β1, before and after invasion of oral squamous cell carcinoma. J Oral Pathol Med. 2011;40(7):552–9. https://doi.org/10.1111/j.1600-0714.2010.00990.x.
Article
CAS
Google Scholar
Miller MR, Ma D, Schappet J, Breheny P, Mott SL, Bannick N, Askeland E, Brown J, Henry MD. Downregulation of dystroglycan glycosyltransferases LARGE2 and ISPD associate with increased mortality in clear cell renal cell carcinoma. Mol Cancer. 2015;14(1):141. https://doi.org/10.1186/s12943-015-0416-z.
Article
CAS
Google Scholar
Alonso-Rangel L, Benítez-Guerrero T, Martínez-Vieyra I, Cisneros B, Martínez-Tovar A, Winder SJ, Cerecedo D. A role for dystroglycan in the pathophysiology of acute leukemic cells. Life Sci. 2017;182:1–9. https://doi.org/10.1016/j.lfs.2017.06.004.
Article
CAS
Google Scholar
Hetzl AC, Fávaro WJ, Billis A, Ferreira U, Cagnon VHA. Steroid hormone receptors, matrix metalloproteinases, insulin-like growth factor, and dystroglycans interactions in prostatic diseases in the elderly men. Microsc Res Tech. 2012;75(9):1197–205. https://doi.org/10.1002/jemt.22049.
Article
CAS
Google Scholar
Jing J, Lien CF, Sharma S, Rice J, Brennan PA, Górecki DC. Aberrant expression, processing and degradation of dystroglycan in squamous cell carcinomas. Eur J Cancer. 2004;40(14):2143–51. https://doi.org/10.1016/j.ejca.2004.05.018.
Article
CAS
Google Scholar
Sgambato A, Caredda E, Leocata P, Rossi G, Boninsegna A, Vitale A, Grandi T, Cittadini A, Migaldi M. Expression of alpha-dystroglycan correlates with tumour grade and predicts survival in oral squamous cell carcinoma. Pathology. 2010;42(3):248–54. https://doi.org/10.3109/00313021003631361.
Article
CAS
Google Scholar
Zhang HZ, Xia XY, Zhu F, Shen H, Song K, Shang ZJ. Correlation of deregulated like-acetylglucosaminyl transferase and aberrant α-dystroglycan expression with human tongue cancer metastasis. J Oral Maxillofac Surg. 2014;72(6):1106–18. https://doi.org/10.1016/j.joms.2013.12.031.
Article
Google Scholar
Parberry-Clark C, Bury JP, Cross SS, Winder SJ. Loss of dystroglycan function in oesophageal cancer. Histopathology. 2011;59(2):180–7. https://doi.org/10.1111/j.1365-2559.2011.03930.x.
Article
Google Scholar
Shen GJ, Xu CY, Li X, Dong MJ, Jiang ZN, Wang J, Wang LB. Dystroglycan is associated with tumor progression and patient survival in gastric cancer. Pathol Oncol Res. 2012;18(1):79–84. https://doi.org/10.1007/s12253-011-9419-2.
Article
CAS
Google Scholar
Jiang X, Rieder S, Giese NA, Friess H, Michalski CW, Kleeff J. Reduced α-dystroglycan expression correlates with shortened patient survival in pancreatic cancer. J Surg Res. 2011;171(1):120–6. https://doi.org/10.1016/j.jss.2009.11.730.
Article
CAS
Google Scholar
Sgambato A, Migaldi M, Montanari M, Camerini A, Brancaccio A, Rossi G, Cangiano R, Losasso C, Capelli G, Trentini G, Cittadini A. Dystroglycan expression is frequently reduced in human breast and colon cancers and is associated with tumor progression. Am J Pathol. 2003;162(3):849–60. https://doi.org/10.1016/S0002-9440(10)63881-3.
Article
CAS
Google Scholar
Coco C, Zannoni GF, Caredda E, Sioletic S, Boninsegna A, Migaldi M, Rizzo G, Bonetti LR, Genovese G, Stigliano E, Cittadini A, Sgambato A. Increased expression of CD133 and reduced dystroglycan expression are strong predictors of poor outcome in colon cancer patients. J Experimental Clin Cancer Res. 2012;31(1):71–81. https://doi.org/10.1186/1756-9966-31-71.
Article
CAS
Google Scholar
Esser AK, Miller MR, Huang Q, Meier MM, Beltrán-Valero de Bernabé D, Stipp CS, Campbell KP, Lynch CF, Smith BJ, Cohen MB, Henry MD. Loss of LARGE2 disrupts functional glycosylation of α-dystroglycan in prostate cancer. J Biol Chem. 2013;288(4):2132–42. https://doi.org/10.1074/jbc.M112.432807.
Article
CAS
Google Scholar
Sgambato A, De Paola B, Migaldi M, Di Salvatore M, Rettino A, Rossi G, Faraglia B, Boninsegna A, Maiorana A, Cittadini A. Dystroglycan expression is reduced during prostate tumorigenesis and is regulated by androgens in prostate cancer cells. J Cell Physiol. 2007;213(2):528–39. https://doi.org/10.1002/jcp.21130.
Article
CAS
Google Scholar
Shimojo H, Kobayashi M, Kamigaito T, Shimojo Y, Fukuda M, Nakayama J. Reduced glycosylation of α-dystroglycans on carcinoma cells contributes to formation of highly infiltrative histological patterns in prostate cancer. Prostate. 2011;71(11):1151–7. https://doi.org/10.1002/pros.21330.
Article
CAS
Google Scholar
Sgambato A, Tarquini E, Resci F, De Paola B, Faraglia B, Camerini A, Rettino A, Migaldi M, Cittadini A, Zannoni GF. Aberrant expression of α-dystroglycan in cervical and vulvar cancer. Gynecol Oncol. 2006;103(2):397–404. https://doi.org/10.1016/j.ygyno.2006.03.059.
Article
CAS
Google Scholar
Sgambato A, Camerini A, Amoroso D, Genovese G, De Luca F, Cecchi M, Migaldi M, Rettino A, Valsuani C, Tartarelli G, Donati S, Siclari O, Rossi G, Cittadini A. Expression of dystroglycan correlates with tumor grade and predicts survival in renal cell carcinoma. Cancer Biol Ther. 2007;6(12):1840–6. https://doi.org/10.4161/cbt.6.12.4983.
Article
CAS
Google Scholar
Sgambato A, Camerini A, Genovese G, De Luca F, Viacava P, Migaldi M, Boninsegna A, Cecchi M, Sepich CA, Rossi G, Arena V, Cittadini A, Amoroso D. Loss of nuclear p27kip1 and α-dystroglycan is a frequent event and is a strong predictor of poor outcome in renal cell carcinoma. Cancer Sci. 2010;101(9):2080–6. https://doi.org/10.1111/j.1349-7006.2010.01644.x.
Article
CAS
Google Scholar
Martin LT, Glass M, Dosunmu E, Martin PT. Altered expression of natively glycosylated α-dystroglycan in pediatric solid tumors. Hum Pathol. 2007;38(11):1657–68. https://doi.org/10.1016/j.humpath.2007.03.025.
Article
CAS
Google Scholar
Noell S, Wolburg-Buchholz K, Mack AF, Ritz R, Tatagiba M, Beschorner R, Wolburg H, Fallier-Becker P. Dynamics of expression patterns of AQP4, dystroglycan, agrin and matrix metalloproteinases in human glioblastoma. Cell Tissue Res. 2012;347(2):429–41. https://doi.org/10.1007/s00441-011-1321-4.
Article
CAS
Google Scholar
Zhang X, Dong XH, Ma Y, Li LF, Wu H, Zhou M, Gu YH, Li GZ, Wang DS, Zhang XF, Mou J, Qi JP. Reduction of α-dystroglycan expression is correlated with poor prognosis in glioma. Tumor Biol. 2014;35(11):11621–9. https://doi.org/10.1007/s13277-014-2418-7.
Article
CAS
Google Scholar
Beltrán D, Anderson ME, Bharathy N, Settelmeyer TP, Svalina MN, Bajwa Z, Shern JF, Gultekin SH, Cuellar MA, Yonekawa T, Keller C, Campbell KP. Exogenous expression of the glycosyltransferase LARGE1 restores α-dystroglycan matriglycan and laminin binding in rhabdomyosarcoma. Skelet Muscle. 2019;9(1):1–10. https://doi.org/10.1186/s13395-019-0195-0.
Article
Google Scholar
Cross SS, Lippitt J, Mitchell A, Hollingsbury F, Balasubramanian SP, Reed MWR, Eaton C, Catto JW, Hamdy F, Winder SJ. Expression of β-dystroglycan is reduced or absent in many human carcinomas. Histopathology. 2008;53(5):561–6. https://doi.org/10.1111/j.1365-2559.2008.03157.x.
Article
CAS
Google Scholar
Henry MD, Cohen MB, Campbell KP. Reduced expression of dystroglycan in breast and prostate cancer. Hum Pathol. 2001;32(8):791–5. https://doi.org/10.1053/hupa.2001.26468.
Article
CAS
Google Scholar
Mathew G, Mitchell A, Jacobs DJM, Hamdy LA, Eaton FC, Rosario C, Cross DJ, Winder SJ. Nuclear targeting of dystroglycan promotes the expression of androgen regulated transcription factors in prostate cancer. Sci Rep. 2013;3(1):1–9. https://doi.org/10.1038/srep02792.
Article
Google Scholar
Losasso C, Di Tommaso F, Sgambato A, Ardito R, Cittadini A, Giardina B, Petrucci TC, Brancaccio A. Anomalous dystroglycan in carcinoma cell lines. FEBS Lett. 2000;484(3):194–8. https://doi.org/10.1016/s0014-5793(00)02157-8.
Article
CAS
Google Scholar
Yamada H, Saito F, Fukuta-Ohi H, Zhong D, Hase A, Arai K, Okuyama A, Maekawa R, Shimizu T, Matsumura K. Processing of β-dystroglycan by matrix metalloproteinase disrupts the link between the extracellular matrix and cell membrane via the dystroglycan complex. Hum Mol Genet. 2001;10(15):1563–9. https://doi.org/10.1093/hmg/10.15.1563.
Article
CAS
Google Scholar
Day BW, Lathia JD, Bruce ZC, D’Souza RCJ, Baumgartner U, Ensbey KS, Lim YC, Stringer BW, Akgül S, Offenhäuser C, Li Y, Jamieson PR, Smith FM, Jurd CLR, Robertson T, Inglis PL, Lwin Z, Jeffree RL, Johns TG, Bhat KPL, Rich JN, Campbell KP, Boyd AW. The dystroglycan receptor maintains glioma stem cells in the vascular niche. Acta Neuropathol. 2019;138(6):1033–52. https://doi.org/10.1007/s00401-019-02069-x.
Article
CAS
Google Scholar
Huang Q, Miller MR, Schappet J, Henry MD. The glycosyltransferase LARGE2 is repressed by snail and ZEB1 in prostate cancer. Cancer Biol Ther. 2015;16(1):125–36. https://doi.org/10.4161/15384047.2014.987078.
Article
CAS
Google Scholar
Singh J, Itahana Y, Knight-Krajewski S, Kanagawa M, Campbell KP, Bissell MJ, Muschler J. Proteolytic enzymes and altered glycosylation modulate dystroglycan function in carcinoma cells. Cancer Res. 2004;64(17):6152–9. https://doi.org/10.1158/0008-5472.CAN-04-1638.
Article
CAS
Google Scholar
Bao X, Kobayashi M, Hatakeyama S, Angata K, Gullberg D, Nakayama J, Fukuda MN, Fukuda M. Tumor suppressor function of laminin-binding α-dystroglycan requires a distinct β3-N-acetylglucosaminyltransferase. Proc Natl Acad Sci USA. 2009;106(29):12109–14. https://doi.org/10.1073/pnas.0904515106.
Article
Google Scholar
Akhavan A, Griffith OL, Soroceanu L, Leonoudakis D, Luciani-Torres MG, Daemen A, Gray JW, Muschler JL. Loss of cell-surface laminin anchoring promotes tumor growth and is associated with poor clinical outcomes. Cancer Res. 2012;72(10):2578–88. https://doi.org/10.1158/0008-5472.CAN-11-3732.
Article
CAS
Google Scholar
Leonoudakis D, Huang G, Akhavan A, Fata JE, Singh M, Gray JW, Muschler JL. Endocytic trafficking of laminin is controlled by dystroglycan and is disrupted in cancers. J Cell Sci. 2014;127(22):4894–903. https://doi.org/10.1242/jcs.152728.
Article
CAS
Google Scholar
Garcovich S, Migaldi M, Reggiani-Bonetti L, Capizzi R, Massimo L, Boninsegna A, Arena V, Cufino V, Scannone D, Sgambato A. Loss of alpha-dystroglycan expression in cutaneous melanocytic lesions. J Eur Acad Dermatol Venereol. 2016;30(6):1029–31. https://doi.org/10.1111/jdv.13087.
Article
Google Scholar
Mitchell A, Mathew G, Jiang T, Hamdy FC, Cross SS, Eaton C, Winder SJ. Dystroglycan function is a novel determinant of tumor growth and behavior in prostate cancer. Prostate. 2013;73(4):398–408. https://doi.org/10.1002/pros.22581.
Article
CAS
Google Scholar
Lee E, Lee DH. Anterior gradient 2 is involved in the post-transcriptional regulation of β-dystroglycan. Anim Cells Syst. 2021;25(1):19–27. https://doi.org/10.1080/19768354.2020.1871405.
Article
CAS
Google Scholar
Kumari K, Das B, Adhya AK, Rath AK, Mishra SK. Genome-wide expression analysis reveals six contravened targets of EZH2 associated with breast cancer patient survival. Sci Rep. 2019;9(1):1974–91. https://doi.org/10.1038/s41598-019-39122-4.
Article
CAS
Google Scholar
Komatsu M, Yoshimaru T, Matsuo T, Kiyotani K, Miyoshi Y, Tanahashi T, Rokutan K, Yamaguchi R, Saito A, Imoto S, Miyano S, Nakamura Y, Sasa M, Shimada M, Katagiri T. Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis. Int J Oncol. 2013;42(2):478–506. https://doi.org/10.3892/ijo.2012.1744.
Article
CAS
Google Scholar
Li M, Xia S, Shi P. DPM1 expression as a potential prognostic tumor marker in hepatocellular carcinoma. PeerJ. 2020;8:e10307. https://doi.org/10.7717/peerj.10307.
Article
Google Scholar
Lan J, Guo P, Lin Y, Mao Q, Guo L, Ge J, Li X, Jiang J, Lin X, Qiu Y. Role of glycosyltransferase PomGnT1 in glioblastoma progression. Neurooncology. 2015;17(2):211–22. https://doi.org/10.1093/neuonc/nou151.
Article
CAS
Google Scholar
Lan J, Guo P, Chen M, Wu B, Mao Q, Qiu Y. O-linked mannose β-1,2-N-acetylglucosaminyltransferase 1 correlated with the malignancy in glioma. J Craniofac Surg. 2013;24(4):1441–6. https://doi.org/10.1097/SCS.0b013e318295378b.
Article
Google Scholar
Luo H, Ma C, Shao J, Cao J. Prognostic implications of novel ten-gene signature in uveal melanoma. Front Oncol. 2020;10:567512. https://doi.org/10.3389/fonc.2020.567512.
Article
Google Scholar
Yang T, Wang Y, Dai W, Zheng X, Wang J, Song S, Fang L, Zhou J, Wu W, Gu J. Increased B3GALNT2 in hepatocellular carcinoma promotes macrophage recruitment via reducing acetoacetate secretion and elevating MIF activity. J Hematol Oncol. 2018;11:50. https://doi.org/10.1186/s13045-018-0595-3.
Article
CAS
Google Scholar
Matsuo T, Komatsu M, Yoshimaru T, Kiyotani K, Miyoshi Y, Sasa M, Katagiri T. Involvement of B3GALNT2 overexpression in the cell growth of breast cancer. Int J Oncol. 2014;44(2):427–34. https://doi.org/10.3892/ijo.2013.2187.
Article
CAS
Google Scholar
Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9:4. https://doi.org/10.1038/s41389-019-0188-1.
Article
CAS
Google Scholar
Zhan Y, Guo W, Zhang Y, Wang Q, Xu XJ, Zhu L. A five-gene signature predicts prognosis in patients with kidney renal clear cell carcinoma. Comput Math Methods Med. 2015. https://doi.org/10.1155/2015/842784.
Article
Google Scholar
Oo HZ, Sentani K, Mukai S, Hattori T, Shinmei S, Goto K, Sakamoto N, Naito Y, Anami K, Trang PTB, Yanagihara K, Oue N, Yasui W. Fukutin, identified by the Escherichia coli ampicillin secretion trap (CAST) method, participates in tumor progression in gastric cancer. Gastric Cancer. 2016;19(2):443–52. https://doi.org/10.1007/s10120-015-0511-2.
Article
CAS
Google Scholar
Ni FB, Lin Z, Fan XH, Shi KQ, Ao JY, Wang XD, Chen RC. A novel genomic-clinicopathologic nomogram to improve prognosis prediction of hepatocellular carcinoma. Clin Chim Acta. 2020;504:88–97. https://doi.org/10.1016/j.cca.2020.02.001.
Article
CAS
Google Scholar
Li Y, Mo H, Wu S, Liu X, Tu K. A novel lactate metabolism-related gene signature for predicting clinical outcome and tumor microenvironment in hepatocellular carcinoma. Front Cell Dev Biol. 2022;9:801959. https://doi.org/10.3389/fcell.2021.801959.
Article
Google Scholar
Haider S, Wang J, Nagano A, Desai A, Arumugam P, Dumartin L, Fitzgibbon J, Hagemann T, Marshall JF, Kocher HM, Crnogorac-Jurcevic T, Scarpa A, Lemoine NR, Chelala C. A multi-gene signature predicts outcome in patients with pancreatic ductal adenocarcinoma. Genome Med. 2014;6(12):105. https://doi.org/10.1186/s13073-014-0105-3.
Article
CAS
Google Scholar
Liu Y, Huang S, Kuang M, Wang H, Xie Q. High LARGE1 expression may predict benefit from adjuvant chemotherapy in resected non-small-cell lung cancer. Pharmacogenom Personal Med. 2021;14:87–99. https://doi.org/10.2147/PGPM.S271516.
Article
Google Scholar
Ginos MA, Page GP, Michalowicz BS, Patel KJ, Volker SE, Pambuccian SE, Ondrey FG, Adams GL, Gaffney PM. Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res. 2004;64(1):55–63. https://doi.org/10.1158/0008-5472.can-03-2144.
Article
CAS
Google Scholar
Wang M, Tao H, Huang P. Clinical significance of LARGE1 in progression of liver cancer and the underlying mechanism. Gene. 2021;779:145493. https://doi.org/10.1016/j.gene.2021.145493.
Article
CAS
Google Scholar
Dietinger V, García de Durango CR, Wiechmann S, Boos SL, Michl M, Neumann J, Hermeking H, Kuster B, Jung P. Wnt-driven LARGE2 mediates laminin-adhesive O-glycosylation in human colonic epithelial cells and colorectal cancer. Cell Commun Signal. 2020;18(1):102.
Article
CAS
Google Scholar
Manya H, Chiba A, Yoshida A, Wang X, Chiba Y, Jigami Y, Margolis RU, Endo T. Demonstration of mammalian protein O-mannosyltransferase activity: Coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci USA. 2004;101(2):500–5. https://doi.org/10.1073/pnas.0307228101.
Article
CAS
Google Scholar
Akasaka-Manya K, Manya H, Nakajima A, Kawakita M, Endo T. Physical and functional association of human protein O-mannosyltransferases 1 and 2. J Biol Chem. 2006;281(28):19339–45. https://doi.org/10.1074/jbc.M601091200.
Article
CAS
Google Scholar
Halmo SM, Singh D, Patel S, Wang S, Edlin M, Boons GJ, Moremen KW, Live D, Wells L. Protein O-linked mannose β-1,4-N-acetylglucosaminyltransferase 2 (POMGNT2) is a gatekeeper enzyme for functional glycosylation of α-dystroglycan. J Biol Chem. 2017;292(6):2101–9. https://doi.org/10.1074/jbc.M116.764712.
Article
CAS
Google Scholar
Peyrard M, Seroussi E, Sandberg-Nordqvist AC, Xie YG, Han FY, Fransson I, Collins J, Dunham I, Kost-Alimova M, Imreh S, Dumanski JP. The human LARGE gene from 22q12.3–q13.1 is a new, distinct member of the glycosyltransferase gene family. Proc Natl Acade Sci USA. 1999;96(2):598–603. https://doi.org/10.1073/pnas.96.2.598.
Article
CAS
Google Scholar
Smith DI, Zhu Y, McAvoy S, Kuhn R. Common fragile sites, extremely large genes, neural development and cancer. Cancer Lett. 2006;232(1):48–57. https://doi.org/10.1016/j.canlet.2005.06.049.
Article
CAS
Google Scholar
Muñoz-Hidalgo L, San-Miguel T, Megías J, Monleón D, Navarro L, Roldán P, Cerdá-Nicolás M, López-Ginés C. Somatic copy number alterations are associated with EGFR amplification and shortened survival in patients with primary glioblastoma. Neoplasia. 2020;22(1):10–21. https://doi.org/10.1016/j.neo.2019.09.001.
Article
CAS
Google Scholar
Inamori K-i, Willer T, Hara Y, Venzke D, Anderson ME, Clarke NF, Guicheney P, Bönnemann CG, Moore SA, Campbell KP. Endogenous glucuronyltransferase activity of LARGE or LARGE2 required for functional modification of α-dystroglycan in cells and tissues. J Biol Chem. 2014;289(41):28138–48. https://doi.org/10.1074/jbc.M114.597831.
Article
CAS
Google Scholar
Ferreira HJ, Davalos V, de Moura MC, Soler M, Perez-Salvia M, Bueno-Costa A, Setien F, Moran S, Villanueva A, Esteller M. Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget. 2018;9(49):29208–19. https://doi.org/10.18632/oncotarget.25673.
Article
Google Scholar
Carvalho S, Oliveira T, Bartels MF, Miyoshi E, Pierce M, Taniguchi N, Carneiro F, Seruca R, Reis CA, Strahl S, Pinho SS. O-mannosylation and N-glycosylation: two coordinated mechanisms regulating the tumour suppressor functions of E-cadherin in cancer. Oncotarget. 2016;7(40):65231–46. https://doi.org/10.18632/oncotarget.11245
Article
Google Scholar
Yamamoto T, Kato Y, Shibata N, Sawada T, Osawa M, Kobayashi M. A role of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in cancer cells: a possible role to suppress cell proliferation. Int J Exp Pathol. 2008;89(5):332–41. https://doi.org/10.1111/j.1365-2613.2008.00599.x.
Article
CAS
Google Scholar
Ferletta M, Kikkawa Y, Yu H, Talts JF, Durbeej M, Sonnenberg A, Timpl R, Campbell KP, Ekblom P, Genersch E. Opposing roles of integrin α6Aβ1 and dystroglycan in laminin-mediated extracellular signal-regulated kinase activation. Mol Biol Cell. 2003;14(5):2088–103. https://doi.org/10.1091/mbc.e03-01-0852.
Article
CAS
Google Scholar
Zhan Y, Tremblay ME, Melian N, Carbonetto S. Evidence that dystroglycan is associated with dynamin and regulates endocytosis. J Biol Chem. 2005;280(18):18015–24. https://doi.org/10.1074/jbc.M409682200.
Article
CAS
Google Scholar
Fukuda M. Recent progress in carbohydrate biosynthesis and function in relation to tumor biology. Biol Pharm Bull. 2012;35(10):1622–5. https://doi.org/10.1248/bpb.b12-00446.
Article
CAS
Google Scholar
Yamamoto T, Shibata N, Saito Y, Osawa M, Kobayashi M. Functions of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in neuromuscular system and other somatic organs. Cent Nerv Syst Agents Med Chem. 2010;10(2):169–79. https://doi.org/10.2174/187152410791196369.
Article
CAS
Google Scholar
Okamura Y, Yamamoto T, Tsukui R, Kato Y, Shibata N. Fukutin protein participates in cell proliferation by enhancing cyclin D1 expression through binding to the transcription factor activator protein-1: an in vitro study. Int J Mol Sci. 2021;22(22):12153. https://doi.org/10.3390/ijms222212153.
Article
CAS
Google Scholar
Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113(1):173–85. https://doi.org/10.1083/jcb.113.1.173.
Article
CAS
Google Scholar
Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Toka FN, Jurka P. Role of cadherins in cancer—a review. Int J Mol Sci. 2020;21(20):7624. https://doi.org/10.3390/ijms21207624.
Article
CAS
Google Scholar
Yeaman C, Grindstaff KK, Nelson WJ. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev. 1999;79(1):73–98. https://doi.org/10.1152/physrev.1999.79.1.73.
Article
CAS
Google Scholar
Duda P, Akula SM, Abrams SL, Steelman LS, Martelli AM, Cocco L, Ratti S, Candido S, Libra M, Montalto G, Cervello M, Gizak A, Rakus D, McCubrey JA. Targeting GSK3 and associated signaling pathways involved in cancer. Cells. 2020;9(5):1110. https://doi.org/10.3390/cells9051110.
Article
CAS
Google Scholar
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, Dewitt J, Gritsch S, Perez EM, Gonzalez-Castro LN, Lan X, Druck N, Rodman C, Dionne D, Kaplan A, Bertalan MS, Small J, Pelton K, Becker S, Bonal D, Nguyen Q-D, Servis RL, Fung JM, Mylvaganam R, Mayr L, Gojo J, Haberler C, Geyeregger R, Czech T, Slavc I, Nahed BV, Curry WT, Carter BS, Wakimoto H, Brastianos PK, Batchelor TT, Stemmer-Rachamimov A, Martinez-Lage M, Frosch MP, Stamenkovic I, Riggi N, Rheinbay E, Monje M, Rozenblatt-Rosen O, Cahill DP, Patel AP, Hunter T, Verma IM, Ligon KL, Louis DN, Regev A, Bernstein BE, Tirosh I, Suvà ML. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178(4):835-49.e21. https://doi.org/10.1016/j.cell.2019.06.024.
Article
CAS
Google Scholar
Wei J, Shaw LM, Mercurio AM. Regulation of mitogen-activated protein kinase activation by the cytoplasmic domain of the α6 integrin subunit. J Biol Chem. 1998;273(10):5903–7. https://doi.org/10.1074/jbc.273.10.5903.
Article
CAS
Google Scholar
Goel HL, Gritsko T, Pursell B, Chang C, Shultz LD, Greiner DL, Norum JH, Toftgard R, Shaw LM, Mercurio AM. Regulated splicing of the α6 integrin cytoplasmic domain determines the fate of breast cancer stem cells. Cell Rep. 2014;7(3):747–61. https://doi.org/10.1016/j.celrep.2014.03.059.
Article
CAS
Google Scholar
Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 2006;66(17):8319–26. https://doi.org/10.1158/0008-5472.CAN-06-0410.
Article
CAS
Google Scholar
Lu PJ, Tucker JD, Branch EK, Guo F, Blaeser AR, Lu QL. Ribitol enhances matriglycan of α-dystroglycan in breast cancer cells without affecting cell growth. Sci Rep. 2020;10:4935. https://doi.org/10.1038/s41598-020-61747-z.
Article
CAS
Google Scholar
Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, Zhao Y, Harris DCH, Zheng G. E-Cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol. 2011. https://doi.org/10.1155/2011/567305.
Article
Google Scholar
Yang J, Zhang W, Evans PM, Chen X, He X, Liu C. Adenomatous polyposis coli (APC) differentially regulates β-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem. 2006;281(26):17751–7. https://doi.org/10.1074/jbc.M600831200.
Article
CAS
Google Scholar
Abbott KL, Troupe K, Lee I, Pierce M. Integrin-dependent neuroblastoma cell adhesion and migration on laminin is regulated by expression levels of two enzymes in the O-mannosyl-linked glycosylation pathway, PomGnT1 and GnT-Vb. Exp Cell Res. 2006;312(15):2837–50. https://doi.org/10.1016/j.yexcr.2006.05.022.
Article
CAS
Google Scholar
Dwyer CA, Baker E, Hu H, Matthews RT. RPTPζ/phosphacan is abnormally glycosylated in a model of muscle-eye-brain disease lacking functional POMGNT1. Neuroscience. 2012;220:47–61. https://doi.org/10.1016/j.neuroscience.2012.06.026.
Article
CAS
Google Scholar
Dwyer CA, Katoh T, Tiemeyer M, Matthews RT. Neurons and glia modify receptor protein-tyrosine phosphatase ζ (RPTPζ)/phosphacan with cell-specific O-mannosyl glycans in the developing brain. J Biol Chem. 2015;290(16):10256–73. https://doi.org/10.1074/jbc.M114.614099.
Article
CAS
Google Scholar
Simoneau M, Coulombe G, Vandal G, Vézina A, Rivard N. SHP-1 inhibits β-catenin function by inducing its degradation and interfering with its association with TATA-binding protein. Cell Signal. 2011;23(1):269–79. https://doi.org/10.1016/j.cellsig.2010.09.011.
Article
CAS
Google Scholar
Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 2011;480(7375):118–22. https://doi.org/10.1038/nature10598.
Article
CAS
Google Scholar
Noor SI, Hoffmann M, Rinis N, Bartels MF, Winterhalter PR, Hoelscher C, Hennig R, Himmelreich N, Thiel C, Ruppert T, Rapp E, Strahl S. Glycosyltransferase POMGNT1 deficiency strengthens N-cadherin-mediated cell–cell adhesion. J Biol Chem. 2021;296:100433. https://doi.org/10.1016/j.jbc.2021.100433.
Article
CAS
Google Scholar
Lommel M, Winterhalter PR, Willer T, Dahlhoff M, Schneider MR, Bartels MF, RennerMüller I, Ruppert T, Wolf E, Strahl S. Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion. Proc Natl Acad Sci USA. 2013;110(52):21024–9. https://doi.org/10.1073/pnas.1316753110.
Article
CAS
Google Scholar
Saito T, Miyoshi E, Sasai K, Nakano N, Eguchi H, Honke K, Taniguchi N. A secreted type of 1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumor angiogenesis without mediation of glycosylation. A novel function of GnT-V distinct from the original glycosyltransferase activity. J Biol Chem. 2002;77(19):17002–8. https://doi.org/10.1074/jbc.M200521200.
Article
CAS
Google Scholar
Xiong H, Kobayashi K, Tachikawa M, Manya H, Takeda S, Chiyonobu T, Fujikake N, Wang F, Nishimoto A, Morris GE, Nagai Y, Kanagawa M, Endo T, Toda T. Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of α-dystroglycan. Biochem Biophys Res Commun. 2006;350(4):935–41. https://doi.org/10.1016/j.bbrc.2006.09.129.
Article
CAS
Google Scholar
Paggi P, De Stefano ME, Petrucci TC. Synaptic remodeling induced by axotomy of superior cervical ganglion neurons: involvement of metalloproteinase-2. J Physiol. 2006;99(2–3):119–24. https://doi.org/10.1016/j.jphysparis.2005.12.004.
Article
CAS
Google Scholar
Fessart D, Domblides C, Avril T, Eriksson LA, Begueret H, Pineau R, Malrieux C, Dugot-Senant N, Lucchesi C, Chevet E, Delom F. Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties. ELife. 2016;5:e13887. https://doi.org/10.7554/eLife.13887.
Article
CAS
Google Scholar
Russo K, Di Stasio E, Macchia G, Rosa G, Brancaccio A, Corinna-Petrucci T. Characterization of the β-dystroglycan-growth factor receptor 2 (Grb2) interaction. Biochem Biophys Res Commun. 2000;274(1):93–8. https://doi.org/10.1006/bbrc.2000.3103.
Article
CAS
Google Scholar
Palmieri V, Bozzi M, Signorino G, Papi M, De Spirito M, Brancaccio A, Malucci G, Sciandra F. α-Dystroglycan hypoglycosylation affects cell migration by influencing β-dystroglycan membrane clustering and filopodia length: a multiscale confocal microscopy analysis. Biochim et Biophys Acta - Mol Basis Dis. 2017;1863(9):2182–91. https://doi.org/10.1016/j.bbadis.2017.05.025.
Article
CAS
Google Scholar
Lara-Chacón B, De León MB, Leocadio D, Gómez P, Fuentes-Mera L, Martínez-Vieyra I, Ortega A, Jans DA, Cisneros B. Characterization of an importin in α/β-recognized nuclear localization signal in β-dystroglycan. J Cell Biochem. 2010;110(3):706–17. https://doi.org/10.1002/jcb.22581.
Article
CAS
Google Scholar
Fuentes-Mera L, Rodríguez-Muñoz R, González-Ramírez R, García-Sierra F, González E, Mornet D, Cisneros B. Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: members of the nuclear DAPC associate with the nuclear matrix. Exp Cell Res. 2006;312(16):3023–35. https://doi.org/10.1016/j.yexcr.2006.06.002.
Article
CAS
Google Scholar
González-Ramírez R, Morales-Lázaro SL, Tapia-Ramírez V, Mornet D, Cisneros B. Nuclear and nuclear envelope localization of dystrophin Dp71 and dystrophin-associated proteins (DAPs) in the C2C12 muscle cells: DAPs nuclear localization is modulated during myogenesis. J Cell Biochem. 2008;105(3):735–45. https://doi.org/10.1002/jcb.21870.
Article
CAS
Google Scholar
Cai C, Hsieh CL, Omwancha J, Zheng Z, Chen SY, Baert JL, Shemshedini L. ETV1 is a novel androgen receptor-regulated gene that mediates prostate cancer cell invasion. Mol Endocrinol. 2007;21(8):1835–46. https://doi.org/10.1210/me.2006-0480.
Article
CAS
Google Scholar
Hollenhorst PC, Ferris MW, Hull MA, Chae H, Kim S, Graves BJ. Oncogenic ETS proteins mimic activated RAS/MAPK signaling in prostate cells. Gene Develop. 2011;25(20):2147–57. https://doi.org/10.1101/gad.17546311.
Article
CAS
Google Scholar
Oh S, Shin S, Janknecht R. ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta - Rev Cancer. 2012;1826(1):1–12. https://doi.org/10.1016/j.bbcan.2012.02.002.
Article
CAS
Google Scholar
Uribe ML, Haro C, Ventero MP, Campello L, Cruces J, Martín-Nieto J. Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease. Mol Vis. 2016;22:658–73. https://www.molvis.org/molvis/v22/658
CAS
Google Scholar
Haro C, Uribe ML, Quereda C, Cruces J, Martín-Nieto J. Expression in retinal neurons of fukutin and FKRP, the protein products of two dystroglycanopathy-causative genes. Mol Vis. 2018;24:43–58. https://www.molvis.org/molvis/v24/43
CAS
Google Scholar
Hiroi A, Yamamoto T, Shibata N, Osawa M, Kobayashi M. Roles of fukutin, the gene responsible for Fukuyama-type congenital muscular dystrophy, in neurons: possible involvement in synaptic function and neuronal migration. Acta Histochem Cytochem. 2011;44(2):91–101. https://doi.org/10.1267/ahc.10045.
Article
CAS
Google Scholar